Background: There is increasing popularity of high-power lasers for surgical debridement and antimicrobial therapy in the management of peri-implantitis and periodontal therapy. Removal of the noxious foci would naturally promote tissue healing directly. However, there are also anecdotal reports of better healing around routine high-power laser procedures. The precise mechanisms mediating these effects remain to be fully elucidated. This work examines these low-dose laser bystander effects on oral human epithelial and fibroblasts, particularly focusing on the role of human β-defensin 2 (HBD-2 or DEFB4A), a potent factor capable of antimicrobial effects and promoting wound healing.

Material And Methods: Laser treatments were performed using a near-infrared laser (810 nm diode) at low doses. Normal human oral keratinocytes and fibroblast cells were used and HBD-2 mRNA and protein expression was assessed with real time polymerase chain reaction, western blotting and immunostaining. Role of transforming growth factor (TGF)-β1 signaling in this process was dissected using pathway-specific small molecule inhibitors.

Results: We observed laser treatments robustly induced HBD-2 expression in an oral fibroblast cell line compared to a keratinocyte cell line. Low-dose laser treatments results in activation of the TGF-β1 pathway that mediated HBD-2 expression. The two arms of TGF-β1 signaling, Smad and non-Smad are involved in laser-mediated HBD-2 expression.

Conclusions: Laser-activated TGF-β1 signaling and induced expression of HBD-2, both of which are individually capable of promoting healing in tissues adjacent to high-power surgical laser applications. Moreover, the use of low-dose laser therapy itself can provide additional therapeutic benefits for effective clinical management of periodontal or peri-implant disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226924PMC
http://dx.doi.org/10.1111/jre.12399DOI Listing

Publication Analysis

Top Keywords

low-dose laser
12
laser treatments
12
tgf-β1 signaling
12
laser
9
transforming growth
8
human β-defensin
8
hbd-2 expression
8
hbd-2
6
laser-activated transforming
4
growth factor-β1
4

Similar Publications

Synergistic Effects and Mechanisms of Action of Rutin with Conventional Antibiotics Against .

Int J Mol Sci

December 2024

Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.

Rutin is a widely known plant secondary metabolite that exhibits multiple physiological functions. The present study focused on screening for synergistic antibacterial combinations containing rutin, and further explored the mechanisms behind this synergy. In vitro antibacterial test results of rutin showed that the ranges of minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) are 0.

View Article and Find Full Text PDF

Refractive errors, particularly myopia, are among the most prevalent visual impairments globally, with rising incidence in children and adolescents. This review explores the epidemiology and risk factors associated with the development of refractive errors, focusing on the environmental and lifestyle factors contributing to the current surge in myopia. We provide an overview of key genetic factors and molecular pathways driving the pathogenesis of myopia and other refractive errors, emphasizing the complex interplay between genetic predisposition and environmental triggers.

View Article and Find Full Text PDF

The emergence of treatment approaches that integrate conventional phototherapy with additional adjuvant treatments has garnered considerable interest. In this study, we proposed a complex utilizing Fe and polydopamine as a carrier, co-loaded with the nitric oxide initiator L-arginine (L-Arg) and the photosensitizer indocyanine green (ICG), as a potential strategy for the "photothermal/photodynamic/Chemodynamic/nitric oxide gas therapy" of osteosarcoma. Nanoparticles have the ability to undergo degradation within the mildly acidic conditions present in the tumor microenvironment.

View Article and Find Full Text PDF

Efficacy of cold and cryo-preserved nerve allografts with low-dose FK506 for motor nerve regeneration: a preclinical study.

J Orthop Surg Res

December 2024

Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea.

Background: Despite their ability to regenerate as well as autografts, the use of nerve allografts is limited by the need for immunosuppression and the risk of disease transmission. Further, decellularized allografts lacking Schwann cells limit axonal regeneration in long nerve defects. This study evaluated sciatic nerve regeneration in rats implanted with cold- or cryopreserved allografts, and examined the effects of FK506, an immunosuppressant that targets calcineurin function, on motor recovery.

View Article and Find Full Text PDF
Article Synopsis
  • - Pigmentary disorders like Lichen planus pigmentosus (LPP) and vitiligo can lead to significant cosmetic concerns and psychosocial stress for patients.
  • - A 61-year-old man with LPP developed vitiligo and was successfully treated with low-dose isotretinoin and topical tacrolimus ointment.
  • - The coexistence of LPP and vitiligo might be explained by an autoimmune process affecting skin pigmentation called melanocytorrhagy.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!