Three new nano sized Cu(II), Co(II) and Ni(II) complexes of imine ligand derived from the condensation of 2-amino-3-hydroxypyridine and 3-methoxysalicylaldehyde have been prepared and investigated using various chemical techniques such as NMR, elemental analysis, molar conductance, IR, electronic spectra, TGA and magnetic moment measurements. The obtained chemical analysis data showed that the synthesis of 1:1 (metal:ligand) ratio and octahedral geometry was proposed on the basis of magnetic moment and spectral data studies except the Cu(II) complex which is tetrahedral geometry. Nano-sized particles of the investigated complexes were prepared by sonochemistry method. Furthermore, metal oxides nanoparticles were gained by calcination of the prepared corresponding complexes at 500°C and their structures were characterized by powder x-ray and transmittance electron microscopy. Moreover, the free ligand, its complexes and their metal oxides have been checked in vitro against a number of bacteria and fungi in order to assess their antimicrobial activities. In addition to that, DNA binding of the prepared complexes was tested by many routes such as electronic spectra, viscosity and gel electrophoresis. The results showed that the investigated complexes could bind to DNA via an intercalative mode. The cytotoxicity of the Schiff base complexes on human colon carcinoma cells, (HCT-116 cell line) and Breast carcinoma cells, (MCF-7 cell line) showed potent cytotoxicity effect against growth of carcinoma cells compared to the clinically used Vinblastine standard.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2016.06.052DOI Listing

Publication Analysis

Top Keywords

metal oxides
12
carcinoma cells
12
dna binding
8
cuii coii
8
coii niii
8
electronic spectra
8
magnetic moment
8
investigated complexes
8
complexes
7
sonochemical synthesis
4

Similar Publications

Background: Synthesis of organic@inorganic hNFs is achieved by the coordination of organic compounds containing amine, amide, and diol groups with bivalent metals. The use of bio-extracts containing these functional groups instead of expensive organic inputs such as DNA, enzymes, and protein creates advantages in terms of cost and applicability. In this study, the application potentials (antioxidant, antibacterial, anticancer, guaiacol, anionic, and cationic dye degradation) of hybrid (organic@inorganic) nanoflowers (hNFs) synthesized with Cu and snakeskin (SSS) were proposed.

View Article and Find Full Text PDF

The electrochemical biosensor has brought a paradigm shift in the field of sensing due to its fast response and easy operability. The performance of electrochemical sensors can be modified by coupling them with various metal oxides, nanomaterials, and nanocomposites. Hydrogen peroxide is a short-lived reactive oxygen species that plays a crucial role in various physiological and biological processes.

View Article and Find Full Text PDF

Herein, a novel nanocomposite was developed to adjust the textural properties of metal-organic frameworks (MOFs) for adsorptive applications. To this end, nitrogen-doped carbon quantum dots/reduced graphene oxide nanocomposite (RC) was embedded into MIL-101(Cr) crystals, named RC-ML-x nanocomposites. The prepared nanoadsorbents were thoroughly characterized by different techniques.

View Article and Find Full Text PDF

A pronounced nucleophilicity in combination with a distinct redox non-innocence is a unique feature of a coordinated ligand, which in the current case, leads to unprecedented carbon-centered reactivity patterns: A carbodiphosphorane-based (CDP) pincer-type rhodium complex allows to cleave two C-Cl-bonds of geminal dichlorides via two consecutive SN2-type oxidative additions resulting in the formation of a stabilized carbene fragment. In the presence of a suitable reductant the carbene fragment can even be converted into olefines or hydrodehalogenation products in a catalytic reaction. The developed method can also be used to convert chlorofluorocarbons (CFCs) such as CH2ClF to fluoromethane and methane.

View Article and Find Full Text PDF

Copper exposure induces neurotoxicity through ferroptosis in C. elegans.

Chem Biol Interact

January 2025

Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China. Electronic address:

Copper, as a vital trace element and ubiquitous environmental pollutant, exhibits a positive correlation with the neurodegenerative diseases. Recent studies have highlighted ferroptosis's significance in heavy metal-induced neurodegenerative diseases, yet its role in copper-related neurotoxicity remains unclear. This study aimed to investigate the role of ferroptosis in copper-induced neurotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!