[Morphological Re-evaluation of the Basal Ganglia Network].

Brain Nerve

Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University.

Published: July 2016

Electrophysiological studies in monkeys have shown that dopaminergic neurons respond to the reward prediction error. In addition, striatal neurons alter their responsiveness to cortical or thalamic inputs in response to dopamine signals, via dopamine-regulated synaptic plasticity. These findings have led to the hypothesis that the striatum exhibits synaptic plasticity under the influence of reward prediction error and conducts reinforcement learning throughout the basal ganglia circuits. The reinforcement learning model is useful; however, the mechanism by which such a process emerges in the basal ganglia needs to be anatomically explained. The actor-critic model has been previously proposed and extended by the existence of role sharing within the striatum, with particular focus on the striosome and matrix compartments. However, this hypothesis has been difficult to confirm morphologically, partly because of the complex structure of the striosome and matrix compartments. Here, we review recent morphological studies that elucidate the input/output organization of the striatal compartments.

Download full-text PDF

Source
http://dx.doi.org/10.11477/mf.1416200519DOI Listing

Publication Analysis

Top Keywords

basal ganglia
12
reward prediction
8
prediction error
8
synaptic plasticity
8
reinforcement learning
8
striosome matrix
8
matrix compartments
8
[morphological re-evaluation
4
re-evaluation basal
4
ganglia network]
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!