Understanding penetration not only in intact, but also in lesional skin with impaired skin barrier function is important, in order to explore the surplus value of nanoparticle-based drug delivery for anti-inflammatory dermatotherapy. Herein, short-term ex vivo cultures of (i) intact human skin, (ii) skin pretreated with tape-strippings and (iii) skin pre-exposed to sodium lauryl sulfate (SLS) were used to assess the penetration of dexamethasone (Dex). Intradermal microdialysis was utilized for up to 24h after drug application as commercial cream, nanocrystals or ethyl cellulose nanocarriers applied at the therapeutic concentration of 0.05%, respectively. In addition, Dex was assessed in culture media and extracts from stratum corneum, epidermis and dermis after 24h, and the results were compared to those in heat-separated split skin from studies in Franz diffusion cells. Providing fast drug release, nanocrystals significantly accelerated the penetration of Dex. In contrast to the application of cream and ethyl cellulose nanocarriers, Dex was already detectable in eluates after 6h when applying nanocrystals on intact skin. Disruption of the skin barrier further accelerated and enhanced the penetration. Encapsulation in ethyl cellulose nanocarriers delayed Dex penetration. Interestingly, for all formulations highly increased concentrations in the dialysate were observed in tape-stripped skin, whereas the extent of enhancement was less in SLS-exposed skin. The results were confirmed in tissue extracts and were in line with the predictions made by in vitro release studies and ex vivo Franz diffusion cell experiments. The use of 45kDa probes further enabled the collection of inflammatory cytokines. However, the estimation of glucocorticoid efficacy by Interleukin (IL)-6 and IL-8 analysis was limited due to the trauma induced by the probe insertion. Ex vivo intradermal microdialysis combined with culture media analysis provides an effective, skin-sparing method for preclinical assessment of novel drug delivery systems at therapeutic doses in models of diseased skin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2016.07.009DOI Listing

Publication Analysis

Top Keywords

ethyl cellulose
16
cellulose nanocarriers
16
skin
13
intradermal microdialysis
12
sodium lauryl
8
human skin
8
skin barrier
8
drug delivery
8
culture media
8
franz diffusion
8

Similar Publications

Antimicrobial resistance poses a growing threat to public health globally. Multidrug resistant Pseudomonas (P.) aeruginosa is detected in many infected wounds and is very challenging to treat with antibiotics.

View Article and Find Full Text PDF

In order to provide long-term anti-corrosion properties of the coatings on the substrate, a microcapsule self-healing coatings system was designed in this paper. Microcapsules were synthesized with ethyl cellulose and octadecyl amine, which were added to epoxy resin to prepare self-healing coatings. The shape of microcapsules was spherical, the average particle size of microcapsules was about 100-120 μm, and the average thickness of microcapsules was 4.

View Article and Find Full Text PDF

Inkless paper made from photochromic materials has garnered significant interest owing to its potential to reduce both ink and paper pollution during production. In this research, we synthesized a dual-material film (EC-PVP/PGMEA/PMoA) and conducted a detailed investigation of its photochromic response to visible light and its microstructural properties. Initially, the film appeared as a translucent yellow, but upon exposure to visible light, it shifted to blue with a maximum absorption peak of 2.

View Article and Find Full Text PDF

The objective of this experiment was to estimate the bioavailability (BA) of rumen-protected (RP) His, RPLys, and 2 RPMet products using 3 in vivo methods: area under the curve (AUC), plasma dose-response (PDR), and fecal free AA (FFAA) methods. We used 8 rumen-cannulated cows in a replicated 4 × 4 Latin square experiment with 16-d periods. Treatments were (1) abomasal infusion of water (control), (2) abomasal infusion of free His, Lys, and Met (FAA), (3) administration of RPHis + RPLys + RPMet1 (rumen-protected methionine protected with ethyl cellulose; RPAA1), and (4) administration of RPHis + RPLys + RPMet2 (rumen-protected methionine protected with a pH-sensitive polymer; RPAA2).

View Article and Find Full Text PDF

Cellulose and its derivatives have been utilized as additives and functional fibers in food industries. The solubility has been traditionally used to categorize cellulose derivatives, whilst their complex effects within food matrix are less understood. In this study, insoluble forms i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!