We present an analytical calculation of the hydrodynamic interaction between two spherical particles near an elastic interface such as a cell membrane. The theory predicts the frequency dependent self- and pair-mobilities accounting for the finite particle size up to the 5th order in the ratio between particle diameter and wall distance as well as between diameter and interparticle distance. We find that particle motion towards a membrane with pure bending resistance always leads to mutual repulsion similar as in the well-known case of a hard-wall. In the vicinity of a membrane with shearing resistance, however, we observe an attractive interaction in a certain parameter range which is in contrast to the behavior near a hard wall. This attraction might facilitate surface chemical reactions. Furthermore, we show that there exists a frequency range in which the pair-mobility for perpendicular motion exceeds its bulk value, leading to short-lived superdiffusive behavior. Using the analytical particle mobilities we compute collective and relative diffusion coefficients. The appropriateness of the approximations in our analytical results is demonstrated by corresponding boundary integral simulations which are in excellent agreement with the theoretical predictions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4955099 | DOI Listing |
Part Fibre Toxicol
January 2025
State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China.
Background: The advancement of nanotechnology underscores the imperative need for establishing in silico predictive models to assess safety, particularly in the context of chronic respiratory afflictions such as lung fibrosis, a pathogenic transformation that is irreversible. While the compilation of predictive descriptors is pivotal for in silico model development, key features specifically tailored for predicting lung fibrosis remain elusive. This study aimed to uncover the essential predictive descriptors governing nanoparticle-induced pulmonary fibrosis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Wagner-Jauregg Weg 15, 4020 Linz and Altenbergerstrasse 69, Linz, 4040, Austria.
Accurate rupture risk assessment is essential for optimizing treatment decisions in patients with cerebral aneurysms. While computational fluid dynamics (CFD) has provided critical insights into aneurysmal hemodynamics, most analyses focus on blood flow patterns, neglecting the biomechanical properties of the aneurysm wall. To address this limitation, we applied Fluid-Structure Interaction (FSI) analysis, an integrative approach that simulates the dynamic interplay between hemodynamics and wall mechanics, offering a more comprehensive risk assessment.
View Article and Find Full Text PDFSoft Matter
January 2025
Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
Microfluidic chips are powerful tools for investigating numerous variables including chemical and physical parameters on protein aggregation. This study investigated the aggregation of bovine serum albumin (BSA) in two different systems: a vial-based static system and a microfluidic chip-based dynamic system in which BSA aggregation was induced successfully. BSA aggregation induced in a microfluidic chip on a timescale of seconds enabled a dynamic investigation of the forces driving the aggregation process.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, J. D. Block, Sec.III, Salt Lake, Kolkata, West Bengal 700 098, India.
We investigated the temperature dependence of the intermolecular dynamics, including intermolecular vibrations and collective orientational relaxation, of one of the most typical deep eutectic solvents, reline, using femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES), subpicosecond optical Kerr effect spectroscopy (ps-OKES), and molecular dynamics (MD) simulations. According to fs-RIKES results, the temperature-dependent intermolecular vibrational band peak at ∼90 cm exhibited a redshift with increasing temperature. The density-of-state (DOS) spectrum of reline by MD simulations reproduced this fs-RIKES spectral feature.
View Article and Find Full Text PDFChemosphere
January 2025
Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), Washington Luís Road, Km 235, 13565-905, São Carlos, SP, Brazil.
Innovative applications of cobalt tungstate nanoparticles (CoWO NPs) are directly linked to their increased production and consumption, which can consequently increase their release into aquatic ecosystems and the exposure of organisms. Microalgae are autotrophic organisms that contribute directly to global primary productivity and provide oxygen for maintaining many organisms on Earth. In this paper, we assessed the toxicity of CoWO NPs when in contact with the freshwater microalga Raphidocelis subcapitata (Chlorophyceae).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!