Monopersulfate photocatalysis under 365 nm radiation. Direct oxidation and monopersulfate promoted photocatalysis of the herbicide tembotrione.

J Environ Manage

Department of Chemical Engineering and Physical Chemistry, University of Extremadura, Av. Elvas s/n, 06006, Badajoz, Spain.

Published: October 2016

Oxone(®) (potassium monopersulfate, MPS) has been used to oxidize the herbicide tembotrione in aqueous solution. Tembotrione elimination kinetics by MPS direct oxidation has been studied. The influence of the main operating variables affecting the process (MPS concentration, temperature and pH) has been evaluated. The process follows 2/3 and first orders in MPS and tembotrione concentrations, respectively. Optimal pH is located around circumneutral conditions. MPS decomposition in the presence of 365 nm UVA radiation and titanium dioxide has also been studied. A kinetic mechanism that simulates MPS decomposition has been proposed, showing the positive effect of titania load and MPS concentration. The system MPS/UVA/TiO2 significantly improves tembotrione and mineralization rate abatement if compared to runs conducted in the absence of MPS. Tembotrione total abatement was achieved in 20 min when 0.05 g L(-1) of titania and 10(-4) M of Oxone(®) were used. TOC conversion was roughly 70% in 90 min under similar operating conditions. An experimental design (Plackett-Burman) has been considered to study the influence of the main variables affecting tembotrione photocatalytic oxidation promoted by MPS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2016.06.061DOI Listing

Publication Analysis

Top Keywords

mps
9
direct oxidation
8
herbicide tembotrione
8
influence main
8
mps concentration
8
mps tembotrione
8
mps decomposition
8
tembotrione
7
monopersulfate photocatalysis
4
photocatalysis 365 nm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!