A mathematical model simulating the interaction between bacteriophages and their bacterial hosts has been developed. It is based on other known models describing this type of interaction, enhanced with an ability to model the system influenced by other environmental factor such as pH and temperature. This could be used for numerous estimations of growth rate, when the pH and/or the temperature of the environment are not constant. The change of pH or the temperature greatly affects the specific growth rate which has an effect on the final results of the simulation. Since the model aims on practical application and easy accessibility, an interactive website has been developed where users can run simulations with their own parameters and easily calculate and visualise the result of simulation. The web simulation is accessible at the URL http://www.phisite.org/model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mbs.2016.06.009 | DOI Listing |
Microbiol Spectr
December 2024
Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands.
Subcell Biochem
December 2024
Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
The virus particles described in the previous chapters of this book are vehicles that transmit the viral genome and the infection from cell to cell. To initiate the infective cycle, the viral genome must therefore translocate from the viral particle to the cell cytoplasm. Via distinct proteins or motifs in their outermost shell, the particles of animal viruses or bacteriophages attach initially to specific receptors on the host cell surface.
View Article and Find Full Text PDFSubcell Biochem
December 2024
Centro de Tecnologías Físicas, Universitat Politècnica de València, Valencia, Spain.
A virus is a complex molecular machine that propagates by channeling its genetic information from cell to cell. Unlike macroscopic engines, it operates in a nanoscopic world under continuous thermal agitation. Viruses have developed efficient passive and active strategies to pack and release nucleic acids.
View Article and Find Full Text PDFCurr Opin Chem Biol
December 2024
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA. Electronic address:
Bacteriophages (phages) play a critical role in microbial ecology and evolution. Their interactions with bacteria are influenced by a complex network of chemical signals derived from a wide range of sources including both endogenous bacterial metabolites and exogenous environmental compounds. In this review, we highlight two areas where small molecules play a pivotal role in modulating phage behaviors.
View Article and Find Full Text PDFMicrobiol Res
December 2024
College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China. Electronic address:
Temperate bacteriophages are crucial for maintaining the pathogenicity and fitness of S. aureus, which also show promise as a biocontrol agent for S. aureus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!