Significance: Oxidative stress is one mechanism whereby tobacco smoking affects human health, as reflected by increased levels of several biomarkers of oxidative stress/damage isolated from tissues and biological fluids of active and passive smokers. Many investigations of cigarette smoke (CS)-induced oxidative stress/damage have been carried out in mammalian animal and cellular models of exposure to CS. Animal models allow the investigation of many parameters that are similar to those measured in human smokers. In vitro cell models may provide new information on molecular and functional differences between cells of smokers and nonsmokers. Recent Advances: Over the past decade or so, a growing number of researches highlighted that CS induces protein carbonylation in different tissues and body fluids of smokers as well as in in vivo and in vitro models of exposure to CS.
Critical Issues: We review recent findings on protein carbonylation in smokers and models thereof, focusing on redox proteomic studies. We also discuss the relevance and limitations of these models of exposure to CS and critically assess the congruence between the smoker's condition and laboratory models.
Future Directions: The identification of protein targets is crucial for understanding the mechanism(s) by which carbonylated proteins accumulate and potentially affect cellular functions. Recent progress in redox proteomics allows the enrichment, identification, and characterization of specific oxidative protein modifications, including carbonylation. Therefore, redox proteomics can be a powerful tool to gain new insights into the onset and/or progression of CS-related diseases and to develop strategies to prevent and/or treat them. Antioxid. Redox Signal. 26, 406-426.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ars.2016.6772 | DOI Listing |
BMC Med Inform Decis Mak
January 2025
Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Background: Environmental exposures such as airborne pollutant exposures and socio-economic indicators are increasingly recognized as important to consider when conducting clinical research using electronic health record (EHR) data or other sources of clinical data such as survey data. While numerous public sources of geospatial and spatiotemporal data are available to support such research, the data are challenging to work with due to inconsistencies in file formats and spatiotemporal resolutions, computational challenges with large file sizes, and a lack of tools for patient- or subject-level data integration.
Results: We developed FHIR PIT (HL7® Fast Healthcare Interoperability Resources Patient data Integration Tool) as an open-source, modular, data-integration software pipeline that consumes EHR data in FHIR® format and integrates the data at the level of the patient or subject with environmental exposures data of varying spatiotemporal resolutions and file formats.
BMC Public Health
January 2025
Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong, PR China.
Background: Traffic-related air pollution especially in highly socioeconomically developed megacity is usually considered as a severe problem leading to inevitable adverse health outcomes. This study aimed to investigate the associations between traffic-related air pollutants with risk of dry eye disease (DED) outpatient visits in a megacity (Guangzhou) along the subtropical coast in South China.
Methods: Daily data on DED outpatient visits and environmental variables from 1 January 2014 to 31 December 2020 in Guangzhou were obtained.
J Urban Health
January 2025
Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
Chronological age is not an accurate predictor of morbidity and mortality risk, as individuals' aging processes are diverse. Phenotypic age acceleration (PhenoAgeAccel) is a validated biological age measure incorporating chronological age and biomarkers from blood samples commonly used in clinical practice that can better reflect aging-related morbidity and mortality risk. The heterogeneity of age-related decline is not random, as environmental exposures can promote or impede healthy aging.
View Article and Find Full Text PDFJ Expo Sci Environ Epidemiol
January 2025
Environmental Research Group, School of Public Health, Imperial College London, London, UK.
Background: Accurate estimates of personal exposure to ambient air pollution are difficult to obtain and epidemiological studies generally rely on residence-based estimates, averaged spatially and temporally, derived from monitoring networks or models. Few epidemiological studies have compared the associated health effects of personal exposure and residence-based estimates.
Objective: To evaluate the association between exposure to air pollution and cognitive function using exposure estimates taking mobility and location into account.
Sci Rep
January 2025
Department of Basic Sciences, Faculty of Dentistry, Universidad de Antioquia U de A, Medellín, 050010, Colombia.
The NLRP3 inflammasome, regulated by TLR4, plays a pivotal role in periodontitis by mediating inflammatory cytokine release and bone loss induced by Porphyromonas gingivalis. Periodontal disease creates a hypoxic environment, favoring anaerobic bacteria survival and exacerbating inflammation. The NLRP3 inflammasome triggers pyroptosis, a programmed cell death that amplifies inflammation and tissue damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!