Objectives: Pulmonary arterial hypertension (PAH) is a progressive disease which causes increased vascular resistance. In this study, our purpose was to quantify the micro-vascular remodeling in monocrotaline-induced PAH rats using synchrotron radiation pulmonary micro-angiography (SRPA), a method we have previously established in an in vivo rat model. To determine the relationship between endothelial function and vascular remodeling, the local expression of endothelin-1 (ET-1), endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) was evaluated using immunohistochemical staining.
Methods: Monocrotaline-induced PAH rats were created by subcutaneous injection of monocrotaline. After 2 weeks, SRPA was performed at the Photon Factory of the High Energy Accelerator Research Organization. The internal diameters of pulmonary arterioles were measured using SRPA images. Semi-quantified analyses of ET-1, eNOS and VEGF expression in pulmonary arterioles were performed by immunohistochemical staining.
Results: Micro-vascular density and the internal diameters of pulmonary arterioles were significantly decreased in PAH. ET-1 expression was significantly increased in PAH compared with the control (1.53 ± 0.45 vs. 0.80 ± 0.14) and eNOS expression was significantly decreased in PAH compared with the control (1.12 ± 0.59 vs. 1.91 ± 0.66), although VEGF expression did not differ between the groups.
Conclusions: SRPA can be effectively used for visualizing the decreased pulmonary micro-vasculature associated with PAH. Increased ET-1 expression and decreased eNOS expression may contribute to the proliferation and vasospasm of pulmonary arterioles induced by endothelial dysfunction due to PAH. This SRPA technology may help to identify a correlation between endothelial function and micro-vasculature remodeling in PAH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11748-016-0684-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!