Objectives: The aim of this study was to evaluate the effects of various finishing and polishing systems on the final surface roughness of a resin composite. Hypotheses tested were: (1) reduced-step polishing systems are as effective as multiple-step systems on reducing the surface roughness of a resin composite and (2) the number of application steps in an F/P system has no effect on reducing surface roughness.
Materials And Methods: Ninety discs of a nano-hybrid resin composite were fabricated and divided into nine groups (n = 10). Except the control, all of the specimens were roughened prior to be polished by: Enamel Plus Shiny, Venus Supra, One-gloss, Sof-Lex Wheels, Super-Snap, Enhance/PoGo, Clearfil Twist Dia, and rubber cups. The surface roughness was measured and the surfaces were examined under scanning electron microscope. Results were analyzed with analysis of variance and Holm-Sidak's multiple comparisons test (p < 0.05).
Results: Significant differences were found among the surface roughness of all groups (p < 0.05). The smoothest surfaces were obtained under Mylar strips and the results were not different than Super-Snap, Enhance/PoGo, and Sof-Lex Spiral Wheels. The group that showed the roughest surface was the rubber cup group and these results were similar to those of the One-gloss, Enamel Plus Shiny, and Venus Supra groups.
Conclusions: (1) The number of application steps has no effect on the performance of F/P systems. (2) Reduced-step polishers used after a finisher can be preferable to multiple-step systems when used on nanohybrid resin composites. (3) The effect of F/P systems on surface roughness seems to be material-dependent rather than instrument- or system-dependent.
Clinical Significance: Reduced-step systems used after a prepolisher can be an acceptable alternative to multiple-step systems on enhancing the surface smoothness of a nanohybrid composite; however, their effectiveness depends on the materials' properties. (J Esthet Restor Dent 29:31-40, 2017).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jerd.12233 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!