Drosophila melanogaster is one of the important test organisms in genetics thanks to its fast growth rate in a culture. This study demonstrates that the fly D. melanogaster can also be exploited as a source for nanofiber production in biotechnical applications. First, its chitin content was determined (7.85%) and then high molecular weight chitosan (141.4kDa) was synthesized through deacetylation of chitin isolates. Chitosan nanofibers with the diameter of 40.0073±12.347nm were produced by electrospinning of Drosophila chitosan. The physicochemical properties of obtained chitin and chitosan from D. melanogaster were determined by Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR). The study demonstrated that the fly D. melanogaster can be utilized for production of chitosan nanofiber concerning its cultivability and low-cost culture requirements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2016.07.021 | DOI Listing |
Macromol Rapid Commun
December 2024
Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, Krakow, 30-059, Poland.
Electrospun nanofiber scaffolds have become vital in biomedical applications due to their high surface area and tunable properties. Chitosan (CS) is widely used, but its rapid degradation limits its effectiveness. This study addresses this limitation by blending CS with polycaprolactone (PCL) and applying genipin cross-linking to enhance its stability and mechanical properties.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China. Electronic address:
Recent explorations into cinnamaldehyde (CIN) have identified its potential as a natural preservative, particularly when incorporated into active packaging to enhance the shelf-life of fruits and vegetables. This study explores the use of cellulose nanofiber (CNF)-stabilized Pickering emulsions as a novel delivery system for essential oils, demonstrating broad applicability in food preservation strategies. We employ CNF as Pickering stabilizers to effectively emulsify and encapsulate CIN, investigating the influence of tannic acid (TA) concentrations on the stability of these emulsions.
View Article and Find Full Text PDFInt J Pharm
December 2024
College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China. Electronic address:
The effect of digestion on nanocarriers will affect the release and pharmacological effects of bioactive compounds in delivery systems. The digestion of cellulose is limited to gut microbiota, which offers a new research strategy for targeted delivery of bioactive compounds. Herein, positively charged cellulose-like chitosan/polyvinylpyrrolidone nanofiber was prepared to improve the residence time, colon target and gut microbiota regulation activity of quercetin decorated selenium nanoparticles (QUE@SeNPs/CS/PVPNFs).
View Article and Find Full Text PDFBiomater Sci
December 2024
Medical Research center, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China.
Acute severe trauma is often associated with rapid blood loss and a high risk of infection. Based on these concerns, this study successfully constructed a multifunctional dual-layer bioactive sponge PCCT with rapid hemostatic and infection-preventing ability. Its external surface is an electrospun poly(lactic acid) (PLA) nanofiber thin film layer, which ensures its high air permeability and effectively protects against external bacterial invasion.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic. Electronic address:
This study introduces a novel, sustainable method for synthesizing sub-5 nm palladium nanoparticles (PdNPs) and covalently binding them to chitosan nanofibers (CHITs) using fully oxidized dialdehyde cellulose (DAC). Notably, the DAC acts not only as a reducing and stabilizing agent for PdNPs, but also as a linker for their rapid and spontaneous covalent attachment to CHITs via Schiff base chemistry. This unique approach yields PdNPs with a narrow size distribution (4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!