Biased allosteric agonism and modulation of metabotropic glutamate receptor 5: Implications for optimizing preclinical neuroscience drug discovery.

Neuropharmacology

Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia. Electronic address:

Published: March 2017

Allosteric modulators, that exhibit no intrinsic agonist activity, offer the advantage of spatial and temporal fine-tuning of endogenous agonist activity, allowing the potential for increased selectivity, reduced adverse effects and improved clinical outcomes. Some allosteric ligands can differentially activate and/or modulate distinct signaling pathways arising from the same receptor, phenomena referred to as 'biased agonism' and 'biased modulation'. Emerging evidence for CNS disorders with glutamatergic dysfunction suggests the metabotropic glutamate receptor subtype 5 (mGlu) is a promising target. Current mGlu allosteric modulators have largely been classified based on modulation of intracellular calcium (iCa) responses to orthosteric agonists alone. We assessed eight mGlu allosteric modulators previously classified as mGlu PAMs or PAM-agonists representing four distinct chemotypes across multiple measures of receptor activity, to explore their potential for engendering biased agonism and/or modulation. Relative to the reference orthosteric agonist, DHPG, the eight allosteric ligands exhibited distinct biased agonism fingerprints for iCa mobilization, IP accumulation and ERK1/2 phosphorylation in HEK293A cells stably expressing mGlu and in cortical neuron cultures. VU0424465, DPFE and VU0409551 displayed the most disparate biased signaling fingerprints in both HEK293A cells and cortical neurons that may account for the marked differences observed previously for these ligands in vivo. Select mGlu allosteric ligands also showed 'probe dependence' with respect to their cooperativity with different orthosteric agonists, as well as biased modulation for the magnitude of positive cooperativity observed. Unappreciated biased agonism and modulation may contribute to unanticipated effects (both therapeutic and adverse) when translating from recombinant systems to preclinical models. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217481PMC
http://dx.doi.org/10.1016/j.neuropharm.2016.07.001DOI Listing

Publication Analysis

Top Keywords

allosteric modulators
12
allosteric ligands
12
mglu allosteric
12
biased agonism
12
agonism modulation
8
metabotropic glutamate
8
glutamate receptor
8
agonist activity
8
modulators classified
8
orthosteric agonists
8

Similar Publications

Developing Topics.

Alzheimers Dement

December 2024

Eisai Ltd, Hatfield, United Kingdom.

Background: Cholinergic innervation is particularly vulnerable in many neurodegenerative diseases such as Alzheimer's diseases. Nerve growth factor (NGF) plays a major role in the maintenance and function of cholinergic neurons, and a decrease in trophic signalling by NGF-Tropomyosin receptor kinase A (TrkA) contributes to cholinergic and synaptic degeneration. E2511 is a novel small molecule TrkA biased positive allosteric modulator showing an increase in specific trophic signalling via direct binding to TrkA with a potential to recover and reinnervate damaged cholinergic neurons.

View Article and Find Full Text PDF

Background: Brain rhythms provide the timing for recruitment of brain activity required for linking together neuronal ensembles engaged in specific tasks. The γ-oscillations (30-120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. High temporal resolution recording methods, such as magnetoencephalography, have made it clear that Alzheimer's disease (AD) patients, starting as early as the mild cognitive impairment (MCI) stage, have diminished γ-oscillations even before the Aβ load takes full effect.

View Article and Find Full Text PDF

Background: Dysregulated GABA/somatostatin (SST) signaling has been implicated in psychiatric and neurodegenerative disorders. The inhibition of excitatory neurons by SST+ interneurons, particularly through α5-containing GABAA receptors (α5-GABAAR), plays a crucial role in mitigating cognitive functions. Previous research demonstrated that an α5-positive allosteric modulator (α5-PAM) mitigates working memory deficits and reverses neuronal atrophy in aged mice.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Suven Life Sciences, Hyderabad, Telangana, India.

Background: SUVN-I7016031 is a novel and selective positive allosteric modulator (PAM) of the M1 subtype of the muscarinic acetylcholine receptors (mAChRs). The proposed primary indication for SUVN-I7016031 is in the treatment of dementia such as Alzheimer's disease dementia (ADD) and Parkinson's disease dementia (PDD). In the current research, the pharmacological properties of SUVN-I7016031 in various types of dementia were investigated.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

UCSD, San Diego, CA, USA.

Cerebral beta-amyloid accumulation is the key initiator of Alzheimer's disease (AD) pathology. Most familial early-onset AD mutations in the APP, PSEN1/2 genes increase the ratio of Abeta42:Abeta40, which drives beta-amyloid accumulation in the brain. In 2001, the late Steve Wagner, Maria Kounnas, and I directed an agnostic high-throughput screen for compounds that would reverse the Abeta42:Abeta40, ratio, and discovered the first non-NSAID (second generation) gamma secretase modulators (GSM) at TorreyPines Therapeutics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!