Purpose: Histone H3.3 (H3F3A) mutation in the codon for lysine 27 (K27M) has been found as driver mutations in pediatric glioblastoma and has been suggested to play critical roles in the pathogenesis of thalamic gliomas and diffuse intrinsic pontine gliomas. We report a case of thalamic glioma with H3F3A K27M mutation, which was detected in both the primary tumor diagnosed as diffuse astrocytoma obtained during the first surgery and also in the tumor diagnosed as anaplastic astrocytoma obtained at the second surgery.
Case Presentation: A 14-year-old girl presented with mild headache. Magnetic resonance imaging (MRI) showed a small intraaxial lesion in the left thalamus, which increased in size. Stereotactic tumor biopsy was performed 2 years after the initial diagnosis, and a pathological diagnosis of diffuse astrocytoma (WHO grade 2) was made. The tumor grew further and showed contrast enhancement on MRI despite 16 months of chemotherapy. Surgical removal via the transcallosal approach was then performed, and postoperative pathological diagnosis was anaplastic astrocytoma (WHO grade 3), indicating malignant transformation of the tumor. Molecular diagnosis of tumor tissue obtained at first and second surgeries revealed H3F3A K27M mutation in both primary and secondary specimens.
Conclusion: This report demonstrates minute neuroradiological and pathological features of malignant transformation from thalamic low grade glioma with H3F3A K27M mutation. It is noteworthy that this mutation was found in this case when the tumor was still a low-grade glioma. Tissue sampling for genetic analysis is useful in patients with thalamic gliomas to predict the clinical course and efficacy of treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00381-016-3161-8 | DOI Listing |
J Neuropathol Exp Neurol
December 2024
Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan.
Primary spinal cord gliomas are rare and are associated with high mortality. Unlike brain tumors, the clinicopathological features of spinal cord gliomas are not well defined. We analyzed clinical, histopathology, and immunohistochemical features and overall survival (OS) of 25 patients with primary spinal cord gliomas treated between 1994 and 2023 at 4 institutions.
View Article and Find Full Text PDFBackground: Heterozygous histone H3.3K27M mutation is a primary oncogenic driver of Diffuse Midline Glioma (DMG). H3.
View Article and Find Full Text PDFNeuro Oncol
August 2024
Department of Neurosurgery, Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Background: H3 K27M-mutated gliomas were first described as a new grade 4 entity in the 2016 World Health Organization classification. Current studies have focused on its typical appearance in children and young adults, increasing the need to better understand the prognostic factors and impact of surgery on adults. Here, we report a multicentric study of this entity in adults.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
April 2024
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.
Diffuse midline glioma, H3 K27-altered (DMG-H3 K27) is an aggressive group of diffuse gliomas that predominantly occurs in pediatric patients, involves midline structures, and displays loss of H3 p.K28me3 (K27me3) expression by immunohistochemistry and characteristic genetic/epigenetic profile. Rare examples of a diffuse glioma with an H3 p.
View Article and Find Full Text PDFVirchows Arch
January 2024
Department of Diagnostics and Public Health, University of Verona, Policlinico G.B. Rossi, P.le L.A. Scuro, 10, 37138, Verona, Italy.
According to the fifth edition of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS), diffuse midline glioma H3 K27-altered is a grade 4 infiltrative glioma that arises from midline anatomical structures and is characterized by the loss of H3 K27me3 and co-occurring H3 K27M mutation or EZHIP overexpression. However, the H3 K27M mutation has also been observed in circumscribed gliomas and glioneuronal tumors arising in midline anatomical structures, which may result in diagnostic pitfalls.Rosette-forming glioneuronal tumor (RGNT) is a CNS WHO grade 1 neoplasm that histologically features neurocytic and glial components and originates in midline anatomical structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!