AI Article Synopsis

Article Abstract

Electrosynthesis of molecularly imprinted polymer (MIP) templated with myoglobin (Mb) and the reference non-imprinted polymer (NIP) was examined with o-phenylenediamine (o-PD) as a monomer. Mass-sensitive quartz crystal microbalance with dissipation monitoring supplied by an electrochemical module (EQCM-D) was applied to characterize and optimize MIP/NIP electrosynthesis. Mb rebinding was detected by direct electrocatalytic reduction of Mb by square wave voltammetry (SWV) or differential pulse voltammetry (DPV). The results obtained showed high specificity of polymeric antibodies to template Mb, with an imprinting factor determined as a ratio Imax(MIP)/Imax(NIP) of 2-4. The prepared MIP sensor is characterized by an apparent dissociation constant of (3.3±0.5)×10(-9)M and has a broad range of working concentrations of 1nM-1μМ, with the detection limit of 0.5nM (9ng/ml). Mb rebinding was examined in Mb-free diluted human serum spiked with Mb as well as in plasma samples of patients with acute myocardial infarction (AMI) and in control plasma of healthy donors in order to demonstrate the potential medical application of developed MIP sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2016.05.101DOI Listing

Publication Analysis

Top Keywords

molecularly imprinted
8
electrosynthesis binding
4
binding properties
4
properties molecularly
4
imprinted poly-o-phenylenediamine
4
poly-o-phenylenediamine selective
4
selective recognition
4
recognition direct
4
direct electrochemical
4
electrochemical detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!