A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predictive modeling of colorectal cancer using a dedicated pre-processing pipeline on routine electronic medical records. | LitMetric

Predictive modeling of colorectal cancer using a dedicated pre-processing pipeline on routine electronic medical records.

Comput Biol Med

Leiden University Medical Center, Department of Public Health and Primary Care, Leiden, The Netherlands; VU University Medical Center, Academic Network of General Practice, Department of General Practice and Elderly Care Medicine, Amsterdam, The Netherlands; Utrecht University Medical Center, Julius Center of Health Sciences and Primary Care, Utrecht, The Netherlands.

Published: September 2016

Over the past years, research utilizing routine care data extracted from Electronic Medical Records (EMRs) has increased tremendously. Yet there are no straightforward, standardized strategies for pre-processing these data. We propose a dedicated medical pre-processing pipeline aimed at taking on many problems and opportunities contained within EMR data, such as their temporal, inaccurate and incomplete nature. The pipeline is demonstrated on a dataset of routinely recorded data in general practice EMRs of over 260,000 patients, in which the occurrence of colorectal cancer (CRC) is predicted using various machine learning techniques (i.e., CART, LR, RF) and subsets of the data. CRC is a common type of cancer, of which early detection has proven to be important yet challenging. The results are threefold. First, the predictive models generated using our pipeline reconfirmed known predictors and identified new, medically plausible, predictors derived from the cardiovascular and metabolic disease domain, validating the pipeline's effectiveness. Second, the difference between the best model generated by the data-driven subset (AUC 0.891) and the best model generated by the current state of the art hypothesis-driven subset (AUC 0.864) is statistically significant at the 95% confidence interval level. Third, the pipeline itself is highly generic and independent of the specific disease targeted and the EMR used. In conclusion, the application of established machine learning techniques in combination with the proposed pipeline on EMRs has great potential to enhance disease prediction, and hence early detection and intervention in medical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2016.06.019DOI Listing

Publication Analysis

Top Keywords

colorectal cancer
8
pre-processing pipeline
8
electronic medical
8
medical records
8
machine learning
8
learning techniques
8
early detection
8
best model
8
model generated
8
subset auc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!