The thermal decomposition and kinetic parameters of synthetized imatinib mesylate α form α form were determined by thermogravimetry (TGA/DTG) under non-isothermal conditions. The experiments were performed at a 25-940°C temperature range at five different heating rates: 2.5Kmin(-1), 5Kmin(-1), 10Kmin(-1), 15Kmin(-1) and 20Kmin(-1) per minute in a nitrogen atmosphere. Imatinib mesylate α form presents one-step mass loss during the degradation process. The thermal stability of the examined material, the melting temperature (Tonset=220.6°C) and ΔH fusion=-95.74Jg(-1) at a heating rate of 10°Cmin(-1) was established. The values of activation energies have been estimated using Kissinger, Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2016.06.032DOI Listing

Publication Analysis

Top Keywords

imatinib mesylate
12
mesylate form
12
thermal stability
8
non-isothermal conditions
8
stability decompositions
4
decompositions kinetics
4
kinetics non-isothermal
4
conditions imatinib
4
form
4
form thermal
4

Similar Publications

Identification of novel BCR::ABL1 kinase domain mutation in patients with chronic myeloid leukaemia and imatinib resistance.

Malays J Pathol

December 2024

National Institutes of Health, Institute for Medical Research, Cancer Research Centre, Haematology Unit, 40170 Shah Alam, Selangor, Malaysia.

Introduction: The emergence of mutations in the BCR::ABL1 kinase domain (KD) impairs imatinib mesylate (IM) binding capacity, thus contributing to IM resistance. Identification of these mutations is important for treatment decisions and precision medicine in chronic myeloid leukaemia (CML) patients. Our study aims to determine the frequency of BCR::ABL1 KD mutations in CML patients with IM resistance.

View Article and Find Full Text PDF

Gastrointestinal stromal tumors (GIST) are rare in the rectum. These usually present with symptoms produced by compression of pelvic organs or bleeding. Surgery is the treatment of choice, however, at times the surgery can be mutilating and organ preservation may not be possible.

View Article and Find Full Text PDF

Purpose: The treatment landscape for chronic myeloid leukemia (CML) has been revolutionized by the introduction of imatinib, a tyrosine kinase inhibitor, which has transformed the disease from a fatal condition into a manageable chronic illness for a substantial number of patients. Despite this, some individuals do not respond adequately to the treatment, and others may experience disease progression even with continued therapy. This study examined how CYP2C8*3 (G416A; rs11572080) and ABCG2 C421A (rs2231142) single nucleotide polymorphisms (SNPs) affect the plasma trough concentration and therapeutic response of imatinib in Egyptian CML patients.

View Article and Find Full Text PDF

Background: Up to 65% of patients with chronic myeloid leukemia (CML) who are treated with imatinib do not achieve sustained deep molecular response, which is required to attempt treatment-free remission. Asciminib is the only approved BCR::ABL1 inhibitor that Specifically Targets the ABL Myristoyl Pocket. This unique mechanism of action allows asciminib to be combined with adenosine triphosphate-competitive tyrosine kinase inhibitors to prevent resistance and enhance efficacy.

View Article and Find Full Text PDF

[Molecular pathology of gastrointestinal neoplasms].

Magy Onkol

December 2024

Sebészeti és Molekuláris Patológiai Osztály, Országos Onkológiai Intézet, Budapest, Hungary.

The molecular pathological examination of solid tumors is essential not only for supporting histological diagnosis but also for detecting hereditary variations and predictive biomarkers. Analyzing predictive markers is fundamental to personalized cancer therapy, directly affecting patient care through pathological testing. These analyses employ both traditional immunohistochemical staining methods and molecular genetic techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!