Drying and recovery of aerobic granules.

Bioresour Technol

Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Henan Province, Zhengzhou, China; Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan. Electronic address:

Published: October 2016

To dehydrate aerobic granules to bone-dry form was proposed as a promising option for long-term storage of aerobic granules. This study cultivated aerobic granules with high proteins/polysaccharide ratio and then dried these granules using seven protocols: drying at 37°C, 60°C, 4°C, under sunlight, in dark, in a flowing air stream or in concentrated acetone solutions. All dried granules experienced volume shrinkage of over 80% without major structural breakdown. After three recovery batches, although with loss of part of the volatile suspended solids, all dried granules were restored most of their original size and organic matter degradation capabilities. The strains that can survive over the drying and storage periods were also identified. Once the granules were dried, they can be stored over long period of time, with minimal impact yielded by the applied drying protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2016.06.121DOI Listing

Publication Analysis

Top Keywords

aerobic granules
16
dried granules
12
granules
8
drying
4
drying recovery
4
aerobic
4
recovery aerobic
4
granules dehydrate
4
dehydrate aerobic
4
granules bone-dry
4

Similar Publications

With the widespread use of typical antibiotics such as sulfamethazine (SMT), it leads to their accumulation in the environment, increasing the risk of the spread of antibiotic resistance genes (ARGs). Aerobic granular sludge (AGS) has shown great potential in treating antibiotic wastewater. However, the long cultivation period of AGS, the easy disintegration of particles and the poor stability of degradation efficiency for highly concentrated antibiotic wastewater are still urgent problems that need to be solved, and it is important to explore the migration and changes of ARGs and microbial diversity in AGS systems.

View Article and Find Full Text PDF

Effective organic matter removal via bio-adsorption prior to anammox process and utilization of carbon-rich sludge.

J Environ Manage

January 2025

Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.

Excessive organic matter in the anaerobic ammonia oxidation (Anammox) leads to the growth of a large number of heterotrophic bacteria, which disrupts the anaerobic ammonia oxidation. The adsorption-anaerobic ammonia oxidation process can effectively reduce excessive organic matter, capturing it instead of consuming it, which is a sustainable development technology. In this study, utilizing the excellent adsorption performance of aerobic granular sludge (AGS), an adsorption-regeneration process was employed to remove organic matter at the front end of the Anammox process through bio-adsorption in an artificial simulated domestic sewage environment, and it was successfully used for denitrification.

View Article and Find Full Text PDF

The vestibular processing regions of the cerebellum integrate vestibular information with other sensory modalities and motor signals to regulate balance, gaze stability, and spatial orientation. A class of excitatory glutamatergic interneurons known as unipolar brush cells (UBCs) are highly concentrated within the granule cell layer of these regions. UBCs receive vestibular signals directly from primary vestibular afferents and indirectly from mossy fibers.

View Article and Find Full Text PDF

Jingfang Granule promotes the tricarboxylic acid cycle to improve chronic fatigue syndrome by increasing the expression of Idh1 and Idh2.

J Ethnopharmacol

December 2024

State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China; College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, China. Electronic address:

Ethnopharmacological Relevance: Chronic fatigue syndrome (CFS), as a complex, multisystemic, and multisystemic disorder affecting multiple organs and systems, often accompanies by symptoms such as post-exercise discomfort, sleep disorders, cognitive difficulties, and orthostatic intolerance. Jingfang Granule (JFG) is a traditional Chinese medicine that have significant protective effects on CFS, but the mechanism is still vague.

Aim Of Study: This study was designed to evaluate the protective mechanism of JFG on mice with CFS.

View Article and Find Full Text PDF

Granular size induces the operation performance variation of aerobic granular sludge reactor, but the profound reasons are unrevealed. This study investigated the influence of granular size distribution on the reactor operation under salt stress. The effective nitrogen removal was achieved at ≤4% salinity, but declined at 6% salinity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!