Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To assess stereoacuity in a population-based sample of children and to examine ocular and systemic parameters related to stereoacuity.
Methods: Using a random cluster sampling method, four- to 18-year-old children from kindergartens, elementary schools, junior high schools and senior high schools from a rural area and an urban area in the East Chinese province of Shandong were included in the school-based cross-sectional study. All participants underwent a comprehensive eye examination including assessment of cycloplegic refraction and measurement of stereoacuity using the Titmus Stereo test.
Results: Out of 6364 eligible children, 5780 (90.8%) children with a mean age of 10.1 ± 3.2 years (range: 4 to 18 years) participated. Mean (± standard deviation) stereoacuity was 50.2 ± 50.6 arc seconds. Stereoacuity improved significantly (P<0.01) from the age group of 4 years to the age group of 6 to 7 years, then showed a plateau, deteriorated (P = 0.001) for both sexes from the age group of 9 years to the age group of 12 years (P<0.001), after which it improved (P = 0.001) again in the age group of 16 years or older to the pre-puberty values. In multivariate analysis, larger angle of binocular disparity (i.e., lower stereoacuity) was significantly associated with lower best corrected visual acuity (logMAR; P<0.001), higher intereye difference in refractive error (spherical equivalent) (P<0.001), higher cylindrical refractive error (P<0.001), higher refractive error (spherical value; P<0.001), higher intereye difference in best corrected visual acuity (logMAR) (P = 0.001), higher intereye difference in axial length (P = 0.001), and rural region of habitation (P = 0.006).
Conclusions: Stereoacuity as tested with the Titmus Stereo test improved significantly from an age of 4 years to an age of 6 and 7 years, then remained constant, temporarily deteriorated for both sexes in pre-puberty and puberty, after which it improved again to pre-puberty or better values at the age of 16 years or older. Lower stereoacuity was associated with lower best corrected visual acuity and higher intereye difference in best corrected visual acuity, higher cylindrical and spherical refractive errors, higher inter-eye difference in refractive error, higher intereye difference in axial length, and rural region of habitation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938521 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0157829 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!