Observation of the D'yakonov-Perel' Spin Relaxation in Single-Crystalline Pt Thin Films.

Phys Rev Lett

Department of Materials Science, Tohoku University, Sendai 980-8579, Japan.

Published: June 2016

The spin relaxation mechanism in single-crystalline and polycrystalline platinum (Pt) thin films is revealed by a quantum interference effect. Examining the relationship between the spin relaxation rate and momentum scattering rate by changing Pt thickness, we find that the spin relaxation rate of Pt strongly depends on both crystal structure and thickness even though the quality of material (Pt) is unchanged. In particular, the D'yakonov-Perel' mechanism is considered as a dominant mechanism under cases where scattering events are suppressed or the interface effect is not negligible.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.116.256802DOI Listing

Publication Analysis

Top Keywords

spin relaxation
16
thin films
8
relaxation rate
8
observation d'yakonov-perel'
4
spin
4
d'yakonov-perel' spin
4
relaxation
4
relaxation single-crystalline
4
single-crystalline thin
4
films spin
4

Similar Publications

Background: Pediatric growth hormone deficiency (GHD) is a disease resulting from the impaired growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis, but the effects of GHD on children's behavior and brain microstructural structure alterations have not yet been fully clarified. We aimed to investigate the quantitative profiles of gray matter and white matter in pediatric GHD using synthetic magnetic resonance imaging (MRI).

Methods: The data of 50 children with GHD and 50 typically developing (TD) children were prospectively collected.

View Article and Find Full Text PDF

χ-sepnet: Deep Neural Network for Magnetic Susceptibility Source Separation.

Hum Brain Mapp

February 2025

Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea.

Magnetic susceptibility source separation (χ-separation), an advanced quantitative susceptibility mapping (QSM) method, enables the separate estimation of paramagnetic and diamagnetic susceptibility source distributions in the brain. Similar to QSM, it requires solving the ill-conditioned problem of dipole inversion, suffering from so-called streaking artifacts. Additionally, the method utilizes reversible transverse relaxation ( ) to complement frequency shift information for estimating susceptibility source concentrations, requiring time-consuming data acquisition for (e.

View Article and Find Full Text PDF

Purpose: This study aims to improve the detection of glutamate (Glu) concentration and T using an enhanced transverse relaxation encoding with narrowband decoupling (TREND) technique.

Methods: A new editing pulse was designed to simultaneously invert both Glu H3 spins (2.12 ppm and 2.

View Article and Find Full Text PDF

Purpose: Solid crystalline spin probes, such as lithium phthalocyanine (LiPc) and lithium octa-n-butoxynaphthalocyanine (LiNc-BuO), allow repeated oxygen measurement using electron paramagnetic resonance (EPR). Due to their short relaxation times, their use for pulse EPR oxygen imaging is limited. In this study, we developed and tested a new class of solid composite spin probes that modified the relaxation rates R and R of LiPc or LiNc-BuO probes, which allowed pO measurements in the full dynamic (0-760 torr) range.

View Article and Find Full Text PDF

Self-Diffusion of Star and Linear Polyelectrolytes in Salt-Free and Salt Solutions.

Macromolecules

January 2025

Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States.

This work explored solution properties of linear and star poly(methacrylic acids) with four, six, and eight arms (PMAA, 4PMAA, PMAA, and 8PMAA, respectively) of matched molecular weights in a wide range of pH, salt, and polymer concentrations. Experimental measurements of self-diffusion were performed by fluorescence correlation spectroscopy (FCS), and the results were interpreted using the scaling theory of polyelectrolyte solutions. While all PMAAs were pH sensitive and showed an increase in hydrodynamic radius ( ) with pH in the dilute regime, the of star polymers (measured at basic pH values) was significantly smaller for the star polyacids due to their more compact structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!