We studied the electronic and magnetic dynamics of ferromagnetic insulating BaFeO_{3} thin films by using pump-probe time-resolved resonant x-ray reflectivity at the Fe 2p edge. By changing the excitation density, we found two distinctly different types of demagnetization with a clear threshold behavior. We assigned the demagnetization change from slow (∼150 ps) to fast (<70 ps) to a transition into a metallic state induced by laser excitation. These results provide a novel approach for locally tuning magnetic dynamics. In analogy to heat-assisted magnetic recording, metallization can locally tune the susceptibility for magnetic manipulation, allowing one to spatially encode magnetic information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.116.256402 | DOI Listing |
ACS Nano
December 2024
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.
Half-metallic magnetism, characterized by metallic behavior in one spin direction and semiconducting or insulating behavior in the opposite spin direction, is an intriguing and highly useful physical property for advanced spintronics because it allows for the complete realization of 100% spin-polarized current. Particularly, half-metallic antiferromagnetism is recognized as an excellent candidate for the development of highly efficient spintronic devices due to its zero net magnetic moment combined with 100% spin polarization, which results in lower energy losses and eliminates stray magnetic fields compared to half-metallic ferromagnets. However, the synthesis and characterization of half-metallic antiferromagnets have not been reported until now as the theoretically proposed materials require a delicate and challenging approach to fabricate such complex compounds.
View Article and Find Full Text PDFChem Sci
December 2024
Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road Xi'an Shaanxi 710054 P. R. China
The benzene tetraanion-bridged rare earth inverse arene amidinate complexes [{Ln(κ:η-Piso)}(μ-η:η-CH)] (2-Ln, Ln = Gd, Tb, Dy, Y; Piso = {(NDipp)C Bu}, Dipp = CH Pr-2,6) were prepared by the reduction of parent Ln(iii) bis-amidinate halide precursors [Ln(Piso)X] (Ln = Tb, Dy; X = Cl, I) or [Ln(Piso)I] (Ln = Gd, Y) with 3 eq. KC in benzene, or by the reaction of the homoleptic Ln(ii) complexes [Ln(Piso)] (Ln = Tb, Dy) with 2 eq. KC in benzene.
View Article and Find Full Text PDFSmall
December 2024
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Among 2-dimensional (2D) non-layered transition-metal chalcogenides (TMCs), cobalt sulfides are highly interesting because of their diverse structural phases and unique properties. The unique magnetic properties of TMCs have generated significant interest in their potential applications in future spintronic devices. In addition, their high conductivity, large specific surface area, and abundant active sites have attracted attention in the field of catalysis.
View Article and Find Full Text PDFAdv Mater
December 2024
Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
The orbital Hall effect originating from light materials with weak spin-orbit coupling, has attracted considerable interest in spintronic applications. Recent studies demonstrate that orbital currents can be generated from charge currents through the orbital Hall effect in ferromagnetic materials. However, the generation of orbital currents in antiferromagnets has so far been elusive.
View Article and Find Full Text PDFNanoscale
December 2024
Layered Materials and Device Physics Laboratory, Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA.
The metal-to-insulator phase transition (MIT) in two-dimensional (2D) materials under the influence of a gating electric field has revealed interesting electronic behavior and the need for a deeper fundamental understanding of electron transport processes, while attracting much interest in the development of next-generation electronic and optoelectronic devices. Although the mechanism of the MIT in 2D semiconductors is a topic under debate in condensed matter physics, our work demonstrates the tunable percolative phase transition in few-layered MoSe field-effect transistors (FETs) using different metallic contact materials. Here, we attempted to understand the MIT through temperature-dependent electronic transport measurements by tuning the carrier density in a MoSe channel under the influence of an applied gate voltage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!