Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High p_{T}>10 GeV elliptic flow, which is experimentally measured via the correlation between soft and hard hadrons, receives competing contributions from event-by-event fluctuations of the low-p_{T} elliptic flow and event-plane angle fluctuations in the soft sector. In this Letter, a proper account of these event-by-event fluctuations in the soft sector, modeled via viscous hydrodynamics, is combined with a jet-energy-loss model to reveal that the positive contribution from low-p_{T} v_{2} fluctuations overwhelms the negative contributions from event-plane fluctuations. This leads to an enhancement of high-p_{T}>10 GeV elliptic flow in comparison to previous calculations and provides a natural solution to the decade-long high-p_{T} R_{AA}⊗v_{2} puzzle. We also present the first theoretical calculation of high-p_{T} v_{3}, which is shown to be compatible with current LHC data. Furthermore, we discuss how short-wavelength jet-medium physics can be deconvoluted from the physics of soft, bulk event-by-event flow observables using event-shape engineering techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.116.252301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!