Unveiling (-)-Englerin A as a Modulator of L-Type Calcium Channels.

Angew Chem Int Ed Engl

Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.

Published: September 2016

The voltage-dependent L-type Ca(2+) channel was identified as a macromolecular target for (-)-englerin A. This finding was reached by using an unprecedented ligand-based prediction platform and the natural product piperlongumine as a pharmacophore probe. (-)-Englerin A features high substructure dissimilarity to known ligands for voltage-dependent Ca(2+) channels, selective binding affinity for the dihydropyridine site, and potent modulation of calcium signaling in muscle cells and vascular tissue. The observed activity was rationalized at the atomic level by molecular dynamics simulations. Experimental confirmation of this hitherto unknown macromolecular target expands the bioactivity space for this natural product and corroborates the effectiveness of chemocentric computational methods for prioritizing target-based screens and identifying binding counterparts of complex natural products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042069PMC
http://dx.doi.org/10.1002/anie.201604336DOI Listing

Publication Analysis

Top Keywords

macromolecular target
8
natural product
8
unveiling --englerin a
4
--englerin a modulator
4
modulator l-type
4
l-type calcium
4
calcium channels
4
channels voltage-dependent
4
voltage-dependent l-type
4
l-type ca2+
4

Similar Publications

Escherichia coli O157:H7 has caused many foodborne disease outbreaks and resulted in unimaginable economic losses. With the evolution of food consumption, people prefer natural preservatives. In this study, the natural agent harmane exhibited potential activity against E.

View Article and Find Full Text PDF

Targeting Brain Drug Delivery with Macromolecules Through Receptor-Mediated Transcytosis.

Pharmaceutics

January 2025

Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China.

Brain diseases pose significant treatment challenges due to the restrictive nature of the blood-brain barrier (BBB). Recent advances in targeting macromolecules offer promising avenues for overcoming these obstacles through receptor-mediated transcytosis (RMT). We summarize the current progress in targeting brain drug delivery with macromolecules for brain diseases.

View Article and Find Full Text PDF

Targeted Polymer-Peptide Conjugates for E-Selectin Blockade in Renal Injury.

Pharmaceutics

January 2025

Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.

Background/objectives: Leukocytes play a significant role in both acute kidney injury (AKI) and chronic kidney disease (CKD), contributing to pathogenesis and tissue damage. The process of leukocyte infiltration into the inflamed tissues is mediated by the interactions between the leukocytes and cell adhesion molecules (CAMs, i.e.

View Article and Find Full Text PDF

Aptamer-antibody sandwich immunosensor for electrochemical detection of FT4.

Mikrochim Acta

January 2025

College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang, 050018, P. R. China.

An aptamer-antibody sandwich electrochemical immunosensor was studied. FeO/MWCNTs-COOH/Nafion was modified and fixed on a glassy carbon electrode to amplify electrical signals. The antibody was coupled with AuNPs to form conjugates.

View Article and Find Full Text PDF

In this present study, we developed and characterized a series of supramolecular G4 hydrogels by integrating -cyclodextrin (-CD) and boronic acid linkers into a supramolecular matrix to enhance antibacterial activity against (). We systematically investigated how varying the number of free boronic acid moieties (ranging from two to six), along with guanosine and β-CD content, influences both the structural integrity and antimicrobial efficacy of these materials. Comprehensive characterization using FTIR, circular dichroism, X-ray diffraction, SEM, AFM, and rheological measurements confirmed successful synthesis and revealed that higher boronic acid content correlated with a stronger, more organized network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!