Teleost fish express at least three estrogen receptor (ER) subtypes. To date, however, the individual role of these ER subtypes in regulating expression of estrogen responsive genes remains ambiguous. Here, we investigate putative roles of three ER subtypes in Japanese medaka (Oryzias latipes), using vitellogenin (VTG) I and II as model genes. We identify specific ligand/receptor/promoter dynamics, using transient transactivation assays that incorporate luciferase reporters comprising 3kb promoter/enhancer regions of medaka VTGI and VTGII genes. Four steroidal estrogens (17β-estradiol, estrone, estriol, and 17α-estradiol) were tested in these assays. Results indicate that all three medaka ERs (mERs) are capable of initiating transactivation of both VTG I and II, with ERβ2 exhibiting greatest activity. Promoter deletion analysis suggests that ligand-specific receptor transactivation and utilization of regional-specific estrogen response elements may be associated with differential activities of each medaka ER. Further, cluster analysis of in vivo gene expression and in vitro transactivation suggests that all three ER subtypes putatively play a role in up-regulation of VTG. Results illustrate that preferential ligand/receptor/promoter interactions may have direct implications for VTG gene expression and other ER-mediated regulatory functions that are relevant to the risk assessment of estrogenic compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5443407 | PMC |
http://dx.doi.org/10.1021/acs.est.6b01968 | DOI Listing |
Environ Health (Wash)
January 2025
Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States.
In May 2021, the M/V ship fire disaster led to the largest maritime spill of resin pellets (nurdles) and burnt plastic (pyroplastic). Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles and pieces of pyroplastic. Three years later, the toxicity of the spilled material remains unresolved.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China. Electronic address:
Tinidazole (TNZ), a common nitroimidazole antibiotic, is pervasive in aquatic ecosystems, posing potential threats to marine organisms. The environmental fate of TNZ, particularly under solar irradiation, and the associated secondary risks are not well characterized. Herein, the photochemical reactivity of TNZ and four other typical nitroimidazoles (i.
View Article and Find Full Text PDFSci Total Environ
January 2025
Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8563, Chiba, Japan; Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Chiba, Japan.
In recent decades, microplastics (MPs) have emerged as one of the biggest environmental challenges in aquatic environments. Ingestion and toxicity of MPs in seawater (SW) and freshwater (FW) fish have been studied extensively both in field and laboratory settings. However, the basic mechanism of how fish deal with MPs in SW and FW remains unclear, although physiological conditions of fish differ significantly in the two environments.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Laboratory of Animal Sociology, Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.
In animals where males engage in multiple matings, sperm depletion can substantially reduce the reproductive success of both sexes. However, little is known about how successive matings affect sperm depletion, fertilization rates and mating behaviour. Here, we investigated this phenomenon under laboratory conditions.
View Article and Find Full Text PDFJ Toxicol Sci
January 2025
Department of Creative engineering, National Institute of Technology, Ariake College.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!