AI Article Synopsis

  • Invasive mechanical ventilation is essential for managing critically ill patients but can sometimes lead to prolonged ventilation due to challenges in weaning.
  • Patient-ventilator dyssynchrony is a common issue that makes it harder to liberate patients from mechanical support.
  • Neurally adjusted ventilatory assist (NAVA) may help improve synchronization by using diaphragm signals to guide ventilation, and this report describes a successful case of using NAVA in India for a patient with difficult weaning.

Article Abstract

Invasive mechanical ventilation is an integral component in the management of critically ill patients. In certain situations, liberation from mechanical ventilation becomes difficult resulting in prolonged ventilation. Patient-ventilator dyssynchrony is a frequently encountered reason for difficult weaning. Neurally adjusted ventilatory assist (NAVA) is a novel mode of ventilation that utilizes the electrical activity of diaphragm to pick up respiratory signals and delivers assistance in proportion to the ventilatory requirement of a patient. It may, therefore, be associated with a better patient-ventilator synchrony thereby facilitating weaning. Herein, we report the first case from India describing the use of NAVA in successfully weaning a patient with difficult weaning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4922292PMC
http://dx.doi.org/10.4103/0972-5229.183896DOI Listing

Publication Analysis

Top Keywords

neurally adjusted
8
mechanical ventilation
8
difficult weaning
8
ventilation
5
weaning
5
adjusted ventilation
4
ventilation assist
4
assist weaning
4
weaning difficulty
4
difficulty case
4

Similar Publications

Human mobility between different regions is a major factor in large-scale outbreaks of infectious diseases. Deep learning models incorporating infectious disease transmission dynamics for predicting the spread of multi-regional outbreaks due to human mobility have become a hot research topic. In this study, we incorporate the Graph Transformer Neural Network and graph learning mechanisms into a metapopulation SIR model to build a hybrid framework, Metapopulation Graph Transformer Neural Network (M-Graphormer), for high-dimensional parameter estimation and multi-regional epidemic prediction.

View Article and Find Full Text PDF

Attractive and repulsive visual aftereffects depend on stimulus contrast.

J Vis

January 2025

Laboratoire des Systèmes Perceptifs, Département d'études cognitives, École normale supérieure, PSL University, France.

Visual perception has been described as a dynamic process where incoming visual information is combined with what has been seen before to form the current percept. Such a process can result in multiple visual aftereffects that can be attractive toward or repulsive away from past visual stimulation. A lot of research has been conducted on what functional role the mechanisms that produce these aftereffects may play.

View Article and Find Full Text PDF

Although animals can reliably locate and recognize odorants embedded in complex environments, the neural circuits for accomplishing these tasks remain incompletely understood. Adaptation is likely to be important as it could allow neurons in a brain area to adjust to the broader sensory environment. Adaptive processes must be flexible enough to allow the brain to make dynamic adjustments, while maintaining sufficient stability so that organisms do not forget important olfactory associations.

View Article and Find Full Text PDF

Background: At the pre-clinical stages of Alzheimer's disease (AD) development, the accumulation of amyloid-β (Aβ) and tau induces neural toxicity, synaptic dysfunction, and excitation/inhibition instability of neural network activity, leading to cognitive decline. However, the effects of Aβ/tau accumulation on electroencephalography (EEG) functional connectivity (FC) in cognitively healthy (CH) individuals during a cognitive challenge have not been elucidated. Therefore, the main objective of this work is to evaluate the association between Aβ/tau level and brain FC during a cognitive challenge in CH individuals.

View Article and Find Full Text PDF

Background: Recent advancements in connectome analyses allow for more fine-grained measurements of brain network integrity. One measure of integrity is resilience, or the capacity of the network to retain functionality when confronted with endogenous or exogenous perturbations that result in damage or error. We assessed the impact of individual differences in the resilience of resting BOLD connectivity on the relationship between cognitive and brain changes in a lifespan cohort of cognitively healthy adults over a 5-year period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!