Thirty Years of Saying NO: Sources, Fate, Actions, and Misfortunes of the Endothelium-Derived Vasodilator Mediator.

Circ Res

From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.

Published: July 2016

AI Article Synopsis

  • Endothelial cells regulate blood vessel tone by producing nitric oxide (NO) through endothelial NO synthase, with its activity influenced by calcium levels and chemical modifications.
  • NO interacts with vascular smooth muscle, leading to the production of cGMP, and its production can be stimulated by various factors like catecholamines, serotonin, and shear stress.
  • Endothelial dysfunction, which affects NO production and function, can result from several factors, including receptor issues, reduced enzyme activity, and oxidative stress; interventions can improve this dysfunction by ensuring adequate resources and reducing harmful influences.

Article Abstract

Endothelial cells control vascular tone by releasing nitric oxide (NO) produced by endothelial NO synthase. The activity of endothelial NO synthase is modulated by the calcium concentration and by post-translational modifications (eg, phosphorylation). When NO reaches vascular smooth muscle, soluble guanylyl cyclase is its primary target producing cGMP. NO production is stimulated by circulating substances (eg, catecholamines), platelet products (eg, serotonin), autacoids formed in (eg, bradykinin) or near (eg, adiponectin) the vascular wall and physical factors (eg, shear stress). NO dysfunction can be caused, alone or in combination, by abnormal coupling of endothelial cell membrane receptors, insufficient supply of substrate (l-arginine) or cofactors (tetrahydrobiopterin), endogenous inhibitors (asymmetrical dimethyl arginine), reduced expression/presence/dimerization of endothelial NO synthase, inhibition of its enzymatic activity, accelerated disposition of NO by reactive oxygen species and abnormal responses (eg, biased soluble guanylyl cyclase activity producing cyclic inosine monophosphate) of the vascular smooth muscle. Major culprits causing endothelial dysfunction, irrespective of the underlying pathological process (aging, obesity, diabetes mellitus, and hypertension), include stimulation of mineralocorticoid receptors, activation of endothelial Rho-kinase, augmented presence of asymmetrical dimethyl arginine, and exaggerated oxidative stress. Genetic and pharmacological interventions improve dysfunctional NO-mediated vasodilatations if protecting the supply of substrate and cofactors for endothelial NO synthase, preserving the presence and activity of the enzyme and reducing reactive oxygen species generation. Common achievers of such improvement include maintained levels of estrogens and increased production of adiponectin and induction of silent mating-type information regulation 2 homologue 1. Obviously, endothelium-dependent relaxations are not the only beneficial action of NO in the vascular wall. Thus, reduced NO-mediated responses precede and initiate the atherosclerotic process.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.116.306531DOI Listing

Publication Analysis

Top Keywords

endothelial synthase
16
endothelial
8
vascular smooth
8
smooth muscle
8
soluble guanylyl
8
guanylyl cyclase
8
vascular wall
8
supply substrate
8
asymmetrical dimethyl
8
dimethyl arginine
8

Similar Publications

Despite advances in neonatal and ophthalmological care, retinopathy of prematurity (ROP) continues to be a leading cause of childhood blindness worldwide. Investigating gene variants associated with vascular responses in ROP may provide valuable insights into its pathogenesis and identify risk or protective factors. Nitric oxide (NO) and endothelin-1 (ET-1) play roles in vascular regulation, influencing processes relevant to ROP development.

View Article and Find Full Text PDF

It remains unclear why unilateral proximal carotid artery occlusion (UCAO) causes benign oligemia in mice, yet leads to various outcomes (asymptomatic-to-death) in humans. We hypothesized that inhibition of nitric oxide synthase (NOS) both transforms UCAO-mediated oligemia into full infarction and expands pre-existing infarction. Using 900 mice, we i) investigated stroke-related effects of UCAO with/without intraperitoneal administration of the NOS inhibitor (NOSi) N-nitro-L-arginine methyl ester (L-NAME, 400 mg/kg); ii) examined the rescue effect of the NO-donor, molsidomine (200 mg/kg at 30 minutes); and iii) tested the impact of antiplatelet medications.

View Article and Find Full Text PDF

Stem cells reside in specialized microenvironments, termed niches, at several different locations in tissues. The differential functions of heterogeneous stem cells and niches are important given the increasing clinical applications of stem-cell transplantation and immunotherapy. Whether hierarchical structures among stem cells at distinct niches exist and further control aspects of immune tolerance is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on understanding how different types of exercise and metformin impact vascular health in diabetic rats, particularly looking at oxidative stress and inflammation.
  • The research involved inducing diabetes in rats and subjecting them to various treatments, revealing that all treatments improved crucial biochemical markers related to diabetes.
  • Notably, combining exercise with metformin showed greater benefits, especially with interval training, suggesting a dual approach could enhance therapy for diabetes-related cardiovascular issues.
View Article and Find Full Text PDF

ClC-5 knockout mitigates angiotensin II-induced hypertension and endothelial dysfunction.

Life Sci

December 2024

Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China. Electronic address:

Aims: Impairment of nitric oxide (NO) production is a major cause of endothelial dysfunction and hypertension. ClC-5 Cl channel is abundantly expressed in the vascular endothelium. However, it remains unclear how it regulates endothelial function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!