Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: In Y radioembolization, nontarget embolization to the stomach or small bowel can result in gastrointestinal injury, a rare but difficult to manage clinical complication. However, dosimetric thresholds for toxicity to these tissues from radioembolization have never been evaluated in a controlled setting. We performed an analysis of the effect of Y radioembolization in a porcine model at different absorbed-dose endpoints.
Methods: Six female pigs underwent transfemoral angiography and infusion of Y-resin microspheres into arteries supplying part of the gastric wall. Esophagogastroduodenoscopy was performed after 4 wk to assess interim gastrointestinal health. Animals were monitored for side effects for 9 wk after Y infusion, after which they were euthanized and their upper gastrointestinal tracts were excised for analysis. Histologic sections were used to map microsphere location, and a microdosimetric evaluation was performed to determine the absorbed-dose profile within the gastrointestinal wall.
Results: Y radioembolization dosages from 46.3 to 105.1 MBq were infused, resulting in average absorbed doses of between 35.5 and 91.9 Gy to the gastric wall. No animal exhibited any signs of pain or gastrointestinal distress through the duration of the study. Excised tissue showed 1-2 small (<3.0 cm) healed or healing superficial gastric lesions in 5 of 6 animals. Histologic analysis demonstrated that lesion location was superficial to areas of abnormally high microsphere deposition. An analysis of microsphere deposition patterns within the gastrointestinal wall indicated a high preference for submucosal deposition. Dosimetric evaluation at the luminal mucosa performed on the basis of microscopic microsphere distribution confirmed that Y dosimetry techniques conventionally used in hepatic dosimetry provide a first-order estimate of absorbed dose.
Conclusion: The upper gastrointestinal tract may be less sensitive to Y radioembolization than previously thought. Lack of charged-particle equilibrium at the luminal mucosa may contribute to decreased toxicity of Y radioembolization compared with external-beam radiation therapy in gastrointestinal tissue. Clinical examples of injury from Y nontarget embolization have likely resulted from relatively large Y activities being deposited in small tissue volumes, resulting in absorbed doses in excess of 100 Gy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2967/jnumed.116.176768 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!