Tyrosine hydroxylase (TH), a rate-limiting step in catecholamine synthesis in which its activity influences Alzheimer disease, Parkinson disease, and IQ of schizophrenia patients, has been studied for a long time. In the meantime, the present investigation assessed the effect of noggin and type of self-assembling nanofibers in TH gene over-expression by neuron-like cells derived from human endometrial-derived stromal cells (hEnSCs). Neuroblastoma cells and hEnSCs encapsulated into nanofibers including Matrigel, (RADA), laminin, and BMHP-1 motif bounded to (RADA) and their cell viability were studied for 48 h and 18 days in basal and neurogenic media, respectively, in noggin-rich media. Then, expression of neural genes and proteins has been investigated by immunocytochemistry (ICC) and real-time PCR methods, respectively. The results indicated that neuroblastoma cell and hEnSC viability is in good agreement with the level of Bcl2 and β-tubulin III gene expression; however, -BMHP-1 and -laminin nanofibers exhibited significantly higher cell viability eventually through Wnt/β-catenin signaling pathway as compared to others, respectively. The gene expression analysis of nanofibers showed that none of them induced gamma-aminobutyric acid (GABA) gene expression while glial fibrillary acidic protein (GFAP) gene just over-expressed in cells encapsulated into Matrigel with a low level of Bcl2 gene expression. However, the TH gene just had been over-expressed in cells encapsulated into -laminin nanofiber and 2D cell culture. In the absence of noggin with -laminin nanofibers, TH gene expression was suppressed. It might be concluded that although noggin through anti-BMP pathways resulted in GFAP decrement and TH gene increment, the type of scaffold that defined the final fate of cells and -laminin accompaniment might be useful for the recovery of Alzheimer and Parkinson disease patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-016-0006-0DOI Listing

Publication Analysis

Top Keywords

gene expression
24
gene
10
tyrosine hydroxylase
8
parkinson disease
8
nanofibers gene
8
cells henscs
8
cell viability
8
level bcl2
8
-laminin nanofibers
8
gene over-expressed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!