Degradation of paracetamol (N-(4-hydroxiphenyl)acetamide) in aqueous solution by gamma radiation, gamma radiation/H2O2 and gamma radiation/Fenton processes was studied. Parameters affecting the radiolysis of paracetamol such as radiation dose, initial concentration of pollutant, pH and initial oxidant concentration were investigated. Gamma radiation was performed using a (60)Co source irradiator. Paracetamol degradation and mineralization increased with increasing absorbed radiation dose, but decreased with increasing initial concentration of the drug in aqueous solution. The addition of H2O2 resulted in an increased effect on irradiation-driven paracetamol degradation in comparison with the performance of the irradiation-driven process alone: paracetamol removal increased from 48.9% in the absence of H2O2 to 95.2% for H2O2 concentration of 41.7 mmol/L. However, the best results were obtained with gamma radiation/Fenton process with 100% of the drug removal at 5 kGy, for optimal H2O2 and Fe(2+) concentrations at 13.9 and 2.3 mmol/L, respectively, with a high mineralization of 63.7%. These results suggest gamma radiation/H2O2 and gamma radiation/Fenton processes as promising methods for paracetamol degradation in polluted wastewaters.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10934529.2016.1198140DOI Listing

Publication Analysis

Top Keywords

gamma radiation
12
gamma radiation/fenton
12
paracetamol degradation
12
degradation paracetamol
8
gamma
8
aqueous solution
8
gamma radiation/h2o2
8
radiation/h2o2 gamma
8
radiation/fenton processes
8
radiation dose
8

Similar Publications

Validity of one-time phantomless patient-specific quality assurance in proton therapy with regard to the reproducibility of beam delivery.

Med Phys

January 2025

OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.

Background: Patient-specific quality assurance (PSQA) is a crucial yet resource-intensive task in proton therapy, requiring special equipment, expertise and additional beam time. Machine delivery log files contain information about energy, position and monitor units (MU) of all delivered spots, allowing a reconstruction of the applied dose. This raises the prospect of phantomless, log file-based QA (LFQA) as an automated replacement of current phantom-based solutions, provided that such an approach guarantees a comparable level of safety.

View Article and Find Full Text PDF

Background: Online adaptive radiotherapy (OART) and rapid quality assurance (QA) are essential for effective heavy ion therapy (HIT). However, there is a shortage of deep learning (DL) models and workflows for predicting Monte Carlo (MC) doses in such treatments.

Purpose: This study seeks to address this gap by developing a DL model for independent MC dose (MCDose) prediction, aiming to facilitate OART and rapid QA implementation for HIT.

View Article and Find Full Text PDF

Purpose: The study focused on developing a rapid PCR-based detection method and employing gamma irradiation techniques to manage , aiming to produce brown rot-free export-quality potatoes. This initiative seeks to enhance potato exports from Bangladesh.

Materials And Methods: Samples of potato tubers and soil were collected from various commercially significant potato-growing areas, resulting in a total of 168 isolates from potato tubers and soil across 12 regions.

View Article and Find Full Text PDF

Cardiorespiratory-gated cardiac proton radiotherapy using a novel ultrasound guidance system.

Clin Transl Radiat Oncol

March 2025

Smilow Center for Translational Research, Room 8-136, Univ of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA 19104, USA.

Cardiac stereotactic body radiotherapy is a promising noninvasive treatment for patients with refractory ventricular tachycardia. With the aim to prove feasibility of a novel image guided radiotherapy and heart motion gating device, cardiac proton radiotherapy was performed using a porcine model. Using a novel adaptation of γ - H2AX tissue staining techniques, we have been able to localize a radiation beam in large animal tissue to assess targeting accuracy within a defined field.

View Article and Find Full Text PDF

We present an investigation into the effects of high-energy proton damage on charge trapping in germanium cross-strip detectors with the goal of accomplishing three important measurements. First, we calibrated and characterized the spectral resolution of a spare COSI-balloon detector in order to determine the effects of intrinsic trapping, finding that electron trapping due to impurities dominates over hole trapping in the undamaged detector. Second, we performed two rounds of proton irradiation of the detector in order to quantify, for the first time, the rate at which charge traps are produced by proton irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!