Mono- and double-layer porous scaffolds were successfully fabricated using ball-milled agglomerates of Ti and Ti-10Nb-3Mo alloy. For selectively controlling the level of porosity and pore size, the agglomerates were sieved into two different size fractions of 100-300μm and 300-500μm. Compressive mechanical properties were measured on a series of cylindrical sintered compacts with different ratios of solid core diameter to porous layer width. The graded porous scaffolds exhibited stress-strain curves typical for metallic foams with a defined plateau region after yielding. The compressive strengths and elastic moduli ranged from 300 to 700MPa and 14 to 55GPa, respectively, depending on the core diameter and the material used. The obtained properties make these materials suitable for load-bearing implant applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2016.06.016 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Rheumatoid arthritis (RA) is a common autoimmune joint disease characterized by persistent synovial inflammation and cartilage damage. The current clinical treatments primarily utilize drugs such as triptolide (TP) to address inflammation, yet they are unable to directly repair damaged cartilage. Furthermore, the persistent inflammation often undermines the effectiveness of traditional cartilage repair strategies, preventing them from achieving optimal outcomes.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
Microtia profoundly affects patients' appearance and psychological well-being. Tissue engineering ear cartilage scaffolds have emerged as the most promising solution for ear reconstruction. However, constructing tissue engineering ear cartilage scaffolds requires multiple passaging of chondrocytes, resulting in their dedifferentiation and loss of their special phenotypes and functions.
View Article and Find Full Text PDFAdv Mater
January 2025
Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland.
3D Print Addit Manuf
October 2024
School of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang, China.
The large amount of unfused powder that remains on the surface of Ti6AL4V porous scaffolds prepared by selective laser melting technology is a common problem. Therefore, this article investigated the effects of three different chemical polishing processes on the surface state, pore structure, and mechanical properties of small pore size scaffold materials at different polishing times in the field of implantable medical devices. The results show that the overall treatment effect of the simple chemical polishing process is poor, the internal treatment depth of porous support is insufficient and uneven, and the overall mechanical properties of the sample with the same porosity are average.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China; State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China. Electronic address:
The overexpression of glutathione (GSH) within the tumor microenvironment has long been considered as the major obstacle for reactive oxygen species (ROS)-based antitumor therapies. To address this challenge, a selenite (SeO) and ferric ion co-doped hydroxyapatite (SF-HAP) nanohybrid was synthesized, which is then introduced into poly-L-lactic acid (PLLA) to prepare porous scaffold by selective laser sintering to continuously release Fe and SeO ions. Of great significance is the released SeO catabolize GSH to generate superoxide anion (O) rather than directly eliminating GSH, thereby reversing the obstacle posed by its overexpression and achieving a "waste-to-treasure" transformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!