Calculations of energy transfer in the recombination reaction that forms ozone are carried out within the framework of the mixed quantum/classical theory and using the dimensionally reduced 2D-model of ozone molecule, with bending motion neglected. Recombination rate coefficients are obtained at room temperature for symmetric and asymmetric isotopomers of singly and doubly substituted isotopologues. The processes of resonance formation, spontaneous decay, collisional dissociation, and stabilization by bath gas (Ar) are all characterized and taken into account within the steady-state approximation for kinetics. The focus is on stabilization step, where the mysterious isotopic η-effect was thought to originate from. Our results indicate no difference in cross sections for stabilization of scatteringresonances in symmetric and asymmetric isotopomers. As practical results, the general and simple analytic models for stabilization and dissociation cross sections are presented, which can be applied to resonances in any ozone molecule, symmetric or asymmetric, singly or doubly substituted. Present calculations show some isotope effect that looks similar to the experimentally observed η-effect, and the origin of this phenomenon is in the rates of formation/decay of scatteringresonances, determined by their widths, that are somewhat larger in asymmetric isotopomers than in their symmetric analogues. However, the approximate two-dimensional model used here is insufficient for consistent and reliable description of all features of the isotopic effect in ozone. Calculations using an accurate 3D model are still needed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4945779 | DOI Listing |
J Org Chem
January 2025
Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST), Baldiri Reixach 10, 08028 Barcelona, Spain.
A novel chiral ligand, named MAdPHOS, bearing a P-stereogenic phosphane and a diadamantyl phosphane linked by a NH bridge has been synthesized. This bulky, C-symmetric, PNP ligand has been prepared from enantiopure -butylmethyl aminophosphane and was obtained as a crystalline solid. The NH/PH tautomerism, air-stability, and σ-donor capacity of MAdPHOS have been assessed herein.
View Article and Find Full Text PDFPLoS One
January 2025
Southwest Jiaotong University Hope College, Chengdu, China.
In an era of intense brand competition, a successful logo can effectively boost consumer awareness of a company. However, existing research has not thoroughly examined the aspect of symmetry in logo design. Addressing this gap, the present study investigates the impact of logo symmetry on consumers' perceived product quality.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Materials Science and Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan.
Self-organization realizes various nanostructures to control material properties such as superconducting vortex pinning and thermal conductivity. However, the self-organization of nucleation and growth is constrained by the growth geometric symmetry. To realize highly controlled three-dimensional nanostructures by self-organization, nanostructure formation that breaks the growth geometric symmetry thermodynamically and kinetically, such as tilted or in-plane aligned nanostructures, is a challenging issue.
View Article and Find Full Text PDFPrimary cilia play a pivotal role in cellular signaling and development and disruptions in ciliary form and/or function leads to human ciliopathies. Here, we examine the role of , a key component of the intraflagellar transport-A complex, in mouse forebrain development using a null allele. Our findings reveal significant microcephaly in homozygous mutants is caused by disrupted neural progenitor proliferation and differentiation.
View Article and Find Full Text PDFACS Omega
January 2025
Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
Various symmetric and asymmetric imines were synthesized using the novel amine oxidase, obtained as variants of d-amino acid oxidase (pkDAO) from porcine kidney (Y228L/R283G) and (I230A/R283G). Active primary imines produced as intermediates in the oxidation of methylbenzylamine (MBA) derivatives were trapped by aliphatic, aromatic amines and diamines as nucleophiles forming new imines. ()-Fluoro-MBA was the best substrate for symmetric imine synthesis, providing almost stoichiometric conversion (100 mM) and achieving nearly 100% yield.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!