Cortical spreading depolarization is a metabolically costly phenomenon that affects the brain in both health and disease. Following severe stroke, subarachnoid hemorrhage, or traumatic brain injury, cortical spreading depolarization exacerbates tissue damage and enlarges infarct volumes. It is not known, however, whether spreading depolarization also occurs in the retina in vivo. We report now that spreading depolarization episodes are generated in the in vivo rat retina following retinal vessel occlusion produced by photothrombosis. The properties of retinal spreading depolarization are similar to those of cortical spreading depolarization. Retinal spreading depolarization waves propagate at a velocity of 3.0 ± 0.1 mm/min and are associated with a negative shift in direct current potential, a transient cessation of neuronal spiking, arteriole constriction, and a decrease in tissue O2 tension. The frequency of retinal spreading depolarization generation in vivo is reduced by administration of the NMDA antagonist MK-801 and the 5-HT(1D) agonist sumatriptan. Branch retinal vein occlusion is a leading cause of vision loss from vascular disease. Our results suggest that retinal spreading depolarization could contribute to retinal damage in acute retinal ischemia and demonstrate that pharmacological agents can reduce retinal spreading depolarization frequency after retinal vessel occlusion. Blocking retinal spreading depolarization generation may represent a therapeutic strategy for preserving vision in branch retinal vein occlusion patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5012528PMC
http://dx.doi.org/10.1177/0271678X16657836DOI Listing

Publication Analysis

Top Keywords

spreading depolarization
48
retinal spreading
24
depolarization
12
cortical spreading
12
retinal
12
spreading
11
retinal vessel
8
vessel occlusion
8
frequency retinal
8
depolarization generation
8

Similar Publications

Microbes of nearly every species can form biofilms, communities of cells bound together by a self-produced matrix. It is not understood how variation at the cellular level impacts putatively beneficial, colony-level behaviors, such as cell-to-cell signaling. Here we investigate this problem with an agent-based computational model of metabolically driven electrochemical signaling in Bacillus subtilis biofilms.

View Article and Find Full Text PDF

In clinics, physical injuries to the spinal cord cause a temporary motor areflexia below lesion, known as spinal shock. This topic is still underexplored due to the lack of preclinical spinal cord injury (SCI) models that do not use anesthesia, which would affect spinal excitability. Our innovative design considered a custom-made micro impactor that provides localized and calibrated strikes to the ventral surface of the thoracic spinal cord of the entire CNS isolated from neonatal rats.

View Article and Find Full Text PDF

Cortical spreading depolarization (CSD), a slowly propagating wave of transient cellular depolarization, is a reliable cortical response to various brain insults (stroke, trauma, seizures) and underlying mechanism of migraine aura. Little is known about CSD effects on brain network activity. Using undirected (mutual information, MI) and directed (transfer entropy, TE) measures, we studied the dynamics of cross-hemispheric connectivity associated with the development of unilateral CSD in freely behaving rats and the involvement of inhibitory transmission in mechanisms of the coupling changes.

View Article and Find Full Text PDF

Mechanisms of Vagus Nerve Stimulation in Improving Motor Dysfunction After Stroke.

Neuropsychiatr Dis Treat

December 2024

Department of Neurosurgery, Xishan People's Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast University, Wuxi, People's Republic of China.

Patients with stroke would have persistent functional deficits despite undergoing physiotherapy and rehabilitation training. Recently, vagus nerve stimulation (VNS), a newly emerging neuroregulatory technique, has been shown to improve motor dysfunction after stroke. Evidence from clinical and preclinical studies has proven the safety, feasibility, and efficacy of invasive and noninvasive VNS.

View Article and Find Full Text PDF

Repetitive cortical spreading depolarizations are prolonged early after experimental traumatic brain injury.

Exp Neurol

December 2024

Department of Neurosurgery, University of Cincinnati, Cincinnati, OH 45267, USA; Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA. Electronic address:

Cortical spreading depolarizations (CSDs) are the most common electrophysiological dysfunction following a traumatic brain injury (TBI), and clustered CSDs (≥3 CSDs in 2 h) are associated with poor outcomes 6 months after TBI. While many experimental studies have investigated a single CSD after injury, no known studies have investigated how time after injury affects the characteristics and impact of a CSD cluster. This study sought to determine the characteristics of a cluster of repetitive CSDs when induced at three different time points after moderate experimental TBI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!