In the present study, a method was developed to reproduce two nanogrooved patterns (groove width/ridge width/depth: 150/150/50 nm and 200/800/70 nm) into cylindrical epoxy resin implants, which were subsequently coated with 20 nm of titanium. Also, implants with a conventional surface roughness (R=1.6 μm) were produced. After cytocompatibility analysis of the produced surfaces, implants were installed into the femoral condyle of rats for 4 and 8 weeks. The histomorphometrical analysis of bone volume in a 100 μm wide zone close to the implant surface showed that only for the 200/800 grooves the amount of bone increased significantly between 4 and 8 weeks of implantation. In addition, at the late time point only implants with the 200/800 pattern revealed a significantly higher bone volume compared to the rough controls. In conclusion, the 200/800 grooved pattern can positively influence bone volume adjacent to the implant surface, and should be evaluated and optimized in further (pre-)clinical studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2016.06.013DOI Listing

Publication Analysis

Top Keywords

bone volume
12
implant surface
8
bone
5
nanometer-grooved topography
4
topography stimulates
4
stimulates trabecular
4
trabecular bone
4
bone regeneration
4
regeneration concave
4
concave implant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!