A nanometric Rh overlayer on a metal foil surface as a highly efficient three-way catalyst.

Sci Rep

Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan.

Published: July 2016

Pulsed arc-plasma (AP) deposition of an Rh overlayer on an Fe-Cr-Al stainless steel foil produced a composite material that exhibited high activity for automotive three-way catalysis (TWC). The AP pulses deposited metallic Rh nanoparticles 1-3 nm in size, whose density on the surface increased with the number of pulses. This led to coalescence and grain growth on the foil surface and the eventual formation of a uniform two-dimensional Rh overlayer. Full coverage of the 51 μm-thick flat foil by a 3.2 nm-thick Rh overlayer was achieved after 1,000 pulses. A simulated TWC reaction using a miniature honeycomb fabricated using flat and corrugated foils with the Rh overlayers exhibited successful light-off at a practical gaseous hourly space velocity of 1.2 × 10(5) h(-1). The turnover frequency for the NO-CO reaction over the metallic honeycomb catalyst was ca. 80-fold greater than that achieved with a reference Rh/ZrO2-coated cordierite honeycomb prepared using a conventional wet impregnation and slurry coating procedure. Despite the nonporosity and low surface area of the foil-supported Rh overlayer compared with conventional powder catalysts (Rh/ZrO2), it is a promising alternative design for more efficient automotive catalysts that use less Rh loading.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937386PMC
http://dx.doi.org/10.1038/srep29737DOI Listing

Publication Analysis

Top Keywords

foil surface
8
nanometric overlayer
4
overlayer metal
4
foil
4
metal foil
4
surface
4
surface highly
4
highly efficient
4
efficient three-way
4
three-way catalyst
4

Similar Publications

Bio-inspired carbon-based artificial muscle with precise and continuous morphing capabilities.

Natl Sci Rev

January 2025

CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

In the face of advancements in microrobotics, intelligent control and precision medicine, artificial muscle actuation systems must meet demands for precise control, high stability, environmental adaptability and high integration miniaturization. Carbon materials, being lightweight, strong and highly conductive and flexible, show great potential for artificial muscles. Inspired by the butterfly's proboscis, we have developed a carbon-based artificial muscle, hydrogen-substituted graphdiyne muscle (HsGDY-M), fabricated efficiently using an emerging hydrogen-substituted graphdiyne (HsGDY) film with an asymmetrical surface structure.

View Article and Find Full Text PDF

Novel organic additives with high dipole moments: Improving the anode interface structure to enhance the performance of zinc ion aqueous batteries.

J Colloid Interface Sci

December 2024

Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China. Electronic address:

The reversibility and stability of aqueous zinc-ion batteries (AZIBs) are largely limited by free-water-induced side reactions (e.g., hydrogen evolution and zinc corrosion) and negative zinc dendrite growth.

View Article and Find Full Text PDF

From automated Raman to cost-effective nanoparticle-on-film (NPoF) SERS spectroscopy: A combined approach for assessing micro- and nanoplastics released into the oral cavity from chewing gum.

J Hazard Mater

December 2024

Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom; Material and Advanced Technologies for Healthcare, Queen's University of Belfast, 18-30 Malone Road, Belfast BT9 5DL, United Kingdom. Electronic address:

Microplastics (MPs) and Nanoplastics (NPs), a burgeoning health hazard, often go unnoticed due to suboptimal analytical tools, making their way inside our bodies through various means. Surface Enhanced Raman Spectroscopy (SERS), although is utilized in detecting NPs, challenges arise at low concentrations due to their low Raman cross section and inability to situate within hotspots owing to their ubiquitous size and shape. This study presents an innovative and cost-effective approach employing household metallic foils (aluminium and copper) as nanoparticle-on-film (NPoF) substrates for targeting such analytes.

View Article and Find Full Text PDF

Fast Kinetics Enabled by Ion Enrichment Layer for Dendrite-Free Zinc Anode.

Small Methods

December 2024

College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.

Aqueous zinc-ion batteries (AZIBs) are considered a promising choice for energy storage devices owing to the excellent safety and favorable capacity of the Zn anode. However, the uncontrolled dendrite growth of Zn anode severely constrains the practical applications of AZIBs. Herein, a novel ion enrichment layer of CuS is designed and constructed on the Zn foil surface to achieve dendrite-free Zn anode.

View Article and Find Full Text PDF

Candle soot-smoked electrodes as a natural superhydrophobic material for potentiometric sensors.

Talanta

December 2024

Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, PL-30059, Krakow, Poland. Electronic address:

The application of carbon soot as a solid-contact layer in potentiometric sensor is presented. The preparation method of carbon layer from the candle is inexpensive and as short as 10 s and was optimized and described in the scope of this paper. With the use of the proposed procedure, it is possible to cover not only the glassy carbon disc electrodes, but all surfaces of various shapes and types, like foil or paper.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!