Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An ex-vivo Coeliac Ganglion-Superior Ovarian Nerve-Ovary (CG-SON-O) system and an ovary without peripheral neural influence from virgin rats in the first proestrous were used to test whether ovarian extrinsic innervation and nitric oxide (NO) affects steroidogenesis in the ovary. The CG and the ovary were placed in separate buffered-compartments, connected by the SON. Stimulation of the CG was achieved by 10(-6)M acetylcholine (Ach). The ovary without peripheral neural influence was placed alone in a buffered-compartment. To test a possible role of NO in the ovarian response to peripheral neural influence, 100μM sodium nitroprusside (SNP, an NO donor) and 100μM N(G)-nitro-l-arginine methyl ester (l-NAME, an inhibitor of NO synthase) were added to the ovarian compartment separately. In the CG-SON-O system, SNP into the ovarian compartment increased the concentration of NO, reduced the release of progesterone and increased the release of estradiol (E2), increasing the mRNAs related to their synthesis enzyme. The addition of l-NAME to the ovarian compartment caused an opposite effect. In the ovary alone, NO manifested an antisteroidogenic effect on both hormones. These results show that the ovarian extrinsic innervation maintains a direct relationship between NO and E2, both needed at high levels during the follicular phase, allowing the continuity of the estrous cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygcen.2016.07.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!