Liagora japonica is a red algal species distributed in temperate regions of Japan. This species has not been collected from its type locality on the Pacific coast of Japan since 1927 and seems to have become extinct in this area. For molecular characterization of L. japonica, we extracted DNA from the topotype material of L. japonica collected in 1927, analyzed seven genes using Illumina next-generation sequencing, and compared these data with sequences from modern samples of similar red algae collected from the Japan Sea coast of Japan. Both morphological and molecular data from modern samples and historical specimens (including the lectotype and topotype) suggest that the specimens from the Pacific and Japan Sea coasts of Japan should be treated as a single species, and that L. japonica is phylogenetically separated from the genus Liagora. Based on the phylogenetic results and examination of reproductive structures, we propose Otohimella japonica gen. et comb. nov., characterized morphologically by diffuse carposporophytes, undivided carposporangia, and involucral filaments initiated only from the cortical cell on the supporting cell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4936710PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158944PLOS

Publication Analysis

Top Keywords

next-generation sequencing
8
liagora japonica
8
coast japan
8
modern samples
8
japan sea
8
japonica
6
japan
6
sequencing 88-year-old
4
88-year-old specimen
4
species
4

Similar Publications

A Japanese woman with Li-Fraumeni syndrome in her 40s underwent comprehensive genetic profiling accompanied by germline data using the Oncoguide NCC Oncopanel, but no germline pathogenic variants in the tumor suppressor gene TP53 were detected. However, careful examination of additional data in the report suggested the presence of a large TP53 deletion. Custom targeting next-generation sequencing and nanopore sequencing revealed a 3.

View Article and Find Full Text PDF

Plant growth-promoting bacteria (PGPB) are considered an effective eco-friendly biostimulator. However, relatively few studies have examined how PGPB affect the native bacterial community of major crops. Thus, this study investigates the impact of a PGPB consortium, comprising Pseudomonas sp.

View Article and Find Full Text PDF

To investigate the clinicopathological and genetic features of infantile rhabdomyofibrosarcoma (IRFS) with EGFR kinase domain duplication (EGFR-KDD). The clinical, morphological and immunohistochemical features of three IRFS with EGFR-KDD diagnosed from January 2022 to January 2024 at Department of Pathology, Foshan Traditional Chinese Medicine Hospital, Foshan, China were retrospectively analyzed using PCR or next generation sequencing technique; and related literature was reviewed. There were 1 male and 2 females, aged at presentation ranging from 1 to 4 years.

View Article and Find Full Text PDF

[Solid, endometrial-like and transitional growth patterns of ovarian high-grade serous carcinoma: a clinicopathological analysis of 25 cases].

Zhonghua Bing Li Xue Za Zhi

February 2025

Department of Pathology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China.

To investigate the clinicopathological characteristics of solid, endometrial-like and transitional (SET) cell growth subtype in high-grade serous ovarian carcinoma (HGSC). Clinical data of 25 cases of HGSC-SET were collected from January 2020 to March 2024 at the Affiliated Suzhou Hospital of Nanjing Medical University, and their histological features were analyzed. Immunohistochemical stains were used to analyze the expression of ER, PR, PAX8, WT-1, p16, p53 and Ki-67.

View Article and Find Full Text PDF

To investigate the expression pattern of pan-TRK protein in colorectal cancers with NTRK gene fusion and mismatch repair deficient (dMMR) and to analyze its molecular pathological characteristics. A total of 117 dMMR colorectal cancers diagnosed in the Department of Pathology of Henan Provincial People's Hospital, Zhengzhou, China from 2020 to 2023 were collected. Immunohistochemistry (IHC), fluorescence in situ hybridization (FISH) and DNA/RNA-based next-generation sequencing (NGS) were used to detect pan-TRK protein expression and fusion partner genes in tumors, and to further explore the correlation between pan-TRK staining patterns and partner genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!