Atomistic molecular dynamics simulations have been performed to investigate volumetric quantities and dynamic properties of binary trihexyltetradecylphosphonium bis(oxalato)borate ([P6,6,6,14][BOB]) ionic liquid (IL)/water mixtures with different water concentrations. The predicted liquid densities for typical [P6,6,6,14][BOB] IL/water mixtures are consistent with available experimental data with a relative discrepancy of less than 3%. The liquid densities and excess molar volumes of all studied [P6,6,6,14][BOB] IL/water mixtures are characterized by concave and convex features, respectively, within full water concentration range. The dynamic properties of [P6,6,6,14] cations, [BOB] anions, and water molecules are particularly analyzed through calculation of velocity autocorrelation functions, diffusion coefficients, and reorientational autocorrelation functions and correlation times. The translational and reorientational mobilities of three species become faster upon increasing water concentration in [P6,6,6,14][BOB] IL/water mixtures and present complex dynamical characteristics arising from three distinct microscopic diffusion features within the full water concentration range. The obtained striking volumetric quantities and particular dynamic properties are well correlated to microscopic liquid structural organization and distinct local ionic environment of all studied [P6,6,6,14][BOB] IL/water mixtures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.6b02921DOI Listing

Publication Analysis

Top Keywords

il/water mixtures
20
dynamic properties
16
[p66614][bob] il/water
16
water concentration
12
volumetric quantities
8
quantities dynamic
8
liquid densities
8
studied [p66614][bob]
8
features full
8
full water
8

Similar Publications

Desalination of seawater by forward osmosis is a technology potentially able to address the global water scarcity problem. The major challenge limiting its widespread practical application is the design of a draw solute that can be separated from water by an energetically efficient process and then reused for the next cycle. Recent experiments demonstrate that a promising draw solute for forward-osmosis desalination is tetrabutylphosphonium 2,4,6-trimethylbenzenesulfonate ([P][TMBS]).

View Article and Find Full Text PDF

Novel application for graphene oxide-based ionanofluids in flat plate solar thermal collectors.

Sci Rep

July 2024

Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30071, Murcia, Spain.

This study presents new ionanofluids (INF) composed of 1-ethyl-3-methylimidazolium acetate ionic liquid (IL) and graphene oxide (GO) nanoparticles which have been assessed for the first time in an experimental flat plate solar thermal collector (FPSC). For this purpose, four types of INFs were synthesized, maintaining a constant concentration of GO nanoparticles dispersed in different base fluids: ionic liquid (IL/GO), a mixture of ionic liquid and water in varying concentrations (IL-water (75-25)%/GO and IL-water (50-50)%/GO), and water (Water/GO). These four INFs were characterized and their thermophysical and physicochemical properties were determined.

View Article and Find Full Text PDF

In this study, we systematically analyze the surface tension and Hansen solubility parameters (HSPs) of imidazolium-based ionic liquids (ILs) with different anions ([NTf], [PF], [I], and [Br]). These anions are combined with the classical 1-alkyl-3-methyl-substituted imidazolium cations ([CCIm]) and a group of oligoether-functionalized imidazolium cations ([(mPEG)Im]) based on methylated polyethylene glycol (mPEG). In detail, the influences of the length of the alkyl- and the mPEG-chain, the anion size, and the water content are investigated experimentally.

View Article and Find Full Text PDF

The State of Water in "Ionic Liquid [bmim]Cl/AlCl/HO" Systems.

J Phys Chem Lett

October 2023

Department of Nuclear Physics Research Methods, Saint Petersburg State University, 7/9 Universitetskaya nab., 199034 Saint Petersburg, Russia.

The unique physical and chemical properties of ionic liquids (ILs) determine their numerous applications in "green" chemistry and material science. Recently, systems based on ILs have been considered to be promising for use in a new generation of electrochemical devices. The results of a nuclear magnetic resonance (NMR) study of the microstructure of 1-butyl-3-methylimidazolium chloride (IL)/water mixtures in the presence of Al cations are presented.

View Article and Find Full Text PDF

Machine Learning-Guided Adaptive Parametrization for Coupling Terms in a Mixed United-Atom/Coarse-Grained Model for Diphenylalanine Self-Assembly in Aqueous Ionic Liquids.

J Chem Theory Comput

October 2023

Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Precise regulation of the peptide self-assembly into ordered nanostructures with intriguing properties has attracted intense attention. However, predicting peptide assembly at atomic resolution is a challenge due to both the structural flexibility of peptides and the associated huge computational costs. A machine learning-guided adaptive parametrization method was proposed for developing a mixed atomic and coarse-grained (CG) model through a multiobjective optimization strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!