Mathematical modeling based evaluation and simulation of boron removal in bioelectrochemical systems.

Sci Total Environ

Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Electronic address:

Published: November 2016

Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level <2mgL(-1). The ratio between the anolyte and the catholyte flow rates should be kept >22.2 in order to avoid boron accumulation in the anolyte effluent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2016.06.220DOI Listing

Publication Analysis

Top Keywords

boron removal
28
boron
12
removal
9
bioelectrochemical systems
8
removal boron
8
current generation
8
mathematical modeling
4
modeling based
4
based evaluation
4
evaluation simulation
4

Similar Publications

Defective boron nitride aerogels by salt template synthesis: A green adsorbent for tetracycline removal.

Environ Res

January 2025

Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China. Electronic address:

Hexagonal boron nitride (h-BN) exhibits unique application potential in water purification due to its large specific surface area, high porosity, and chemical inertness. Designing adsorbents with highly active adsorption sites is one effective method to improve their adsorption capacities. In this study, porous h-BN aerogels containing multiple defect types (DP-BN) were synthesized by using salt templates.

View Article and Find Full Text PDF

The widespread use of neodymium-iron-boron (NdFeB) magnets has raised concerns about the environmental impact of their disposal, prompting the need for sustainable recycling strategies. Traditional solvents used in recycling are toxic and flammable, making them risky to use. Ionic liquids are safer and greener options with low vapor pressure, high stability, and less flammability.

View Article and Find Full Text PDF

Palladium catalysts form a cornerstone of modern chemistry with upmost scientific and industrial impact. Bulk palladium metal itself is chemically inert, and a sequence of chemical transformations has to be utilized to convert the metal into Pd pre-catalyst covered by ligands. However, the "cocktail" of catalysis concept discovered recently has shown that Pd systems can efficiently operate in catalysis without the necessity of a complicated and expensive pre-installed ligand environment.

View Article and Find Full Text PDF

Objective: Boron Neutron Capture Therapy (BNCT) is a novel precision radiotherapy. The key to BNCT application lies in the effective targeting and retention of the boron-10 (B) carrier. Among the various compounds studied in clinical settings, 4-boronophenylalanine (BPA) become the most prevalent one currently.

View Article and Find Full Text PDF

Evaluation of dose calculation method with a combination of Monte Carlo method and removal-diffusion equation in heterogeneous geometry for boron neutron capture therapy.

Biomed Phys Eng Express

January 2025

Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, JAPAN.

Clinical research in boron neutron capture therapy (BNCT) has been conducted worldwide. Currently, the Monte Carlo (MC) method is the only dose calculation algorithm implemented in the treatment planning system for the clinical treatment of BNCT. We previously developed the MC-RD calculation method, which combines the MC method and the removal-diffusion (RD) equation, for fast dose calculation in BNCT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!