Background: The nucleotide excision repair (NER) pathway, defective in xeroderma pigmentosum (XP) patients, removes DNA photolesions in order to prevent carcinogenesis. Complementation group C (XP-C) is the most frequent group of XP patients worldwide.
Methods: We analyzed seven XP-C patients clinically and molecular-genetically applying: post-UV cell survival (MTT-assay), quantitative Real-time PCR, sequencing on chromosomal as well as cDNA level, and in silico interpretation of sequencing data.
Results: All cases displayed diminished post-UV cell survival as well as reduced XPC mRNA levels. Five homozygous and two heterozygous disease causing mutations were identified. A large chromosomal deletion of ~5.8 kb identified in XP174MA leads to an unique in frame deletion of XPC exon 2 and exon 3. In silico analysis revealed the deletion of 102 amino acids in the N-terminal part of XPC while leaving the C-terminal domain intact. The novel c.361delA mutation in XP168MA leads to a frameshift in exon 3 resulting in a premature stop codon 27 codons downstream of the deleted adenine.
Conclusion: Our analysis confirms that XP-C patients without increased sun sensitivity develop non-melanoma skin cancers earlier than sun-sensitive XP-C patients. Reduced cellular mRNA levels are characteristic for XP complementation group C and qRT-PCR represents a rapid diagnostic tool.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/phpp.12251 | DOI Listing |
Sci Rep
December 2024
Univ. Grenoble Alpes, CEA, Inserm, IRIG, UA13 BGE, Biomics, Grenoble, 38000, France.
Xeroderma pigmentosum group C (XPC) is a versatile protein crucial for sensing DNA damage in the global genome nucleotide excision repair (GG-NER) pathway. This pathway is vital for mammalian cells, acting as their essential approach for repairing DNA lesions stemming from interactions with environmental factors, such as exposure to ultraviolet (UV) radiation from the sun. Loss-of-function mutations in the XPC gene confer a photosensitive phenotype in XP-C patients, resulting in the accumulation of unrepaired UV-induced DNA damage.
View Article and Find Full Text PDFCell Death Dis
November 2024
Univ. Grenoble Alpes, CEA, Inserm, IRIG, UA13 BGE, Biomics, Grenoble, France.
Xeroderma Pigmentosum C is a dermal hereditary disease caused by a mutation in the DNA damage recognition protein XPC that belongs to the Nucleotide excision repair pathway. XPC patients display heightened sensitivity to light and an inability to mend DNA damage caused by UV radiation, resulting in the accumulation of lesions that can transform into mutations and eventually lead to cancer. To address this issue, we conducted a screening of siRNAs targeting human kinases, given their involvement in various DNA repair pathways, aiming to restore normal cellular behavior.
View Article and Find Full Text PDFCancers (Basel)
September 2024
INSERM U1081-CNRS UMR7284-UNS, CEDEX 02, F-06107 Nice, France.
Commun Med (Lond)
August 2023
INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France.
Background: Xeroderma pigmentosum (XP) is a group of rare hereditary disorders with highly increased risk of skin tumors due to defective DNA repair. Recently we reported 34-fold increased risk of internal tumors in XP patients in comparison with general population. The molecular data and clinical practice on the internal tumors treatment in XP patients is limited and scarcely represented in the medical literature.
View Article and Find Full Text PDFCancers (Basel)
May 2023
Unité Mixte de Recherche UMR9019 Centre National de la Recherche Scientifique, 94805 Villejuif, France.
Background: Xeroderma pigmentosum (XP) is a rare genetic disorder characterized by a high incidence of skin cancers. These patients are deficient in nucleotide excision repair caused by mutations in one of the 7 XP genes.
Methods: We diagnosed 181 XP patients using UV-induced DNA repair measurements and/or DNA sequencing from 1982 to 2022 in France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!