Impedimetric real-time monitoring of neural pluripotent stem cell differentiation process on microelectrode arrays.

Biosens Bioelectron

Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany. Electronic address:

Published: December 2016

In today's neurodevelopment and -disease research, human neural stem/progenitor cell-derived networks represent the sole accessible in vitro model possessing a primary phenotype. However, cultivation and moreover, differentiation as well as maturation of human neural stem/progenitor cells are very complex and time-consuming processes. Therefore, techniques for the sensitive non-invasive, real-time monitoring of neuronal differentiation and maturation are highly demanded. Using impedance spectroscopy, the differentiation of several human neural stem/progenitor cell lines was analyzed in detail. After development of an optimum microelectrode array for reliable and sensitive long-term monitoring, distinct cell-dependent impedimetric parameters that could specifically be associated with the progress and quality of neuronal differentiation were identified. Cellular impedance changes correlated well with the temporal regulation of biomolecular progenitor versus mature neural marker expression as well as cellular structure changes accompanying neuronal differentiation. More strikingly, the capability of the impedimetric differentiation monitoring system for the use as a screening tool was demonstrated by applying compounds that are known to promote neuronal differentiation such as the γ-secretase inhibitor DAPT. The non-invasive impedance spectroscopy-based measurement system can be used for sensitive and quantitative monitoring of neuronal differentiation processes. Therefore, this technique could be a very useful tool for quality control of neuronal differentiation and moreover, for neurogenic compound identification and industrial high-content screening demands in the field of safety assessment as well as drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2016.06.056DOI Listing

Publication Analysis

Top Keywords

neuronal differentiation
24
human neural
12
neural stem/progenitor
12
differentiation
10
real-time monitoring
8
monitoring neuronal
8
neuronal
6
monitoring
5
neural
5
impedimetric real-time
4

Similar Publications

Spinal cord injury (SCI) leads to acute tissue damage that disrupts the microenvironmental homeostasis of the spinal cord, inhibiting cell survival and function, and thereby undermining treatment efficacy. Traditional stem cell therapies have limited success in SCI, due to the difficulties in maintaining cell survival and inducing sustained differentiation into neural lineages. A new solution may arise from controlling the fate of stem cells by creating an appropriate mechanical microenvironment.

View Article and Find Full Text PDF

Alternative splicing (AS) plays an important role in neuronal development, function, and disease. Efforts to analyze the transcriptome of AS in neurons on a wide scale are currently limited. We characterized the transcriptome-wide AS changes in SH-SY5Y neuronal differentiation model, which is widely used to study neuronal function and disorders.

View Article and Find Full Text PDF

Efficient stochastic simulation of piecewise-deterministic Markov processes and its application to the Morris-Lecar model of neural dynamics.

Biol Cybern

January 2025

Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.

Piecewise-deterministic Markov processes combine continuous in time dynamics with jump events, the rates of which generally depend on the continuous variables and thus are not constants. This leads to a problem in a Monte-Carlo simulation of such a system, where, at each step, one must find the time instant of the next event. The latter is determined by an integral equation and usually is rather slow in numerical implementation.

View Article and Find Full Text PDF

Human neural stem cells (hNSCs) possess significant therapeutic potential for the treatment of traumatic brain injury (TBI), a leading cause of global death and disability. Recent pre-clinical studies have shown that hNSCs reduce tissue damage and promote functional recovery through neuroprotective and regenerative signaling and cell replacement. Yet the overall efficacy of hNSCs for TBI indications remains unclear.

View Article and Find Full Text PDF

The Role of Autophagy in Copper-Induced Apoptosis and Developmental Neurotoxicity in SH-SY5Y Cells.

Toxics

January 2025

Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.

Copper (Cu) is a global environmental pollutant that poses a serious threat to humans and ecosystems. Copper induces developmental neurotoxicity, but the underlying molecular mechanisms are unknown. Neurons are nonrenewable, and they are unable to mitigate the excessive accumulation of pathological proteins and organelles in cells, which can be ameliorated by autophagic degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!