S100A6 Regulates Endothelial Cell Cycle Progression by Attenuating Antiproliferative Signal Transducers and Activators of Transcription 1 Signaling.

Arterioscler Thromb Vasc Biol

From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries).

Published: September 2016

Objective: S100A6, a member of the S100 protein family, has been described as relevant for cell cycle entry and progression in endothelial cells. The molecular mechanism conferring S100A6's proliferative actions, however, remained elusive.

Approach And Results: Originating from the clinically relevant observation of enhanced S100A6 protein expression in proliferating endothelial cells in remodeling coronary and carotid arteries, our study unveiled S100A6 as a suppressor of antiproliferative signal transducers and activators of transcription 1 signaling. Discovery of the molecular liaison was enabled by combining gene expression time series analysis with bioinformatic pathway modeling in S100A6-silenced human endothelial cells stimulated with vascular endothelial growth factor A. This unbiased approach led to successful identification and experimental validation of interferon-inducible transmembrane protein 1 and protein inhibitors of activated signal transducers and activators of transcription as key components of the link between S100A6 and signal transducers and activators of transcription 1.

Conclusions: Given the important role of coordinated endothelial cell cycle activity for integrity and reconstitution of the inner lining of arterial blood vessels in health and disease, signal transducers and activators of transcription 1 suppression by S100A6 may represent a promising therapeutic target to facilitate reendothelialization in damaged vessels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001879PMC
http://dx.doi.org/10.1161/ATVBAHA.115.306415DOI Listing

Publication Analysis

Top Keywords

signal transducers
20
transducers activators
20
activators transcription
20
cell cycle
12
endothelial cells
12
endothelial cell
8
antiproliferative signal
8
transcription signaling
8
s100a6
6
endothelial
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!