Ultrafast spin manipulation for opto-spin logic applications requires material systems that have strong spin-selective light-matter interaction. Conventional inorganic semiconductor nanostructures [for example, epitaxial II to VI quantum dots and III to V multiple quantum wells (MQWs)] are considered forerunners but encounter challenges such as lattice matching and cryogenic cooling requirements. Two-dimensional halide perovskite semiconductors, combining intrinsic tunable MQW structures and large oscillator strengths with facile solution processability, can offer breakthroughs in this area. We demonstrate novel room-temperature, strong ultrafast spin-selective optical Stark effect in solution-processed (C6H4FC2H4NH3)2PbI4 perovskite thin films. Exciton spin states are selectively tuned by ~6.3 meV using circularly polarized optical pulses without any external photonic cavity (that is, corresponding to a Rabi energy of ~55 meV and equivalent to applying a 70 T magnetic field), which is much larger than any conventional system. The facile halide and organic replacement in these perovskites affords control of the dielectric confinement and thus presents a straightforward strategy for tuning light-matter coupling strength.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4928968 | PMC |
http://dx.doi.org/10.1126/sciadv.1600477 | DOI Listing |
Chiral metasurfaces with strong chirality and high quality factors (Q-factors) have become essential components for achieving strong light-matter interactions and have a wide range of applications in chiral lasers, detectors, etc. However, current schemes primarily focus on enhancing the chiral response and Q-factor, with limited consideration of their modulability and flexibility. In this paper, we present a chiral a-Si metasurface that can support multiple symmetry-protected bound states in the continuum (BIC).
View Article and Find Full Text PDFJ Am Chem Soc
October 2024
Department of Chemistry and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113 United States.
Optical-spin interfaces that enable the photoinitialization, coherent microwave manipulation, and optical read-out of ground state spins have been studied extensively in solid-state defects such as diamond nitrogen vacancy (NV) centers and are promising for quantum information science applications. Molecular quantum bits (qubits) offer many advantages over solid-state spin centers through synthetic control of their optical and spin properties and their scalability into well-defined multiqubit arrays. In this work, we report an optical-spin interface in an organic molecular qubit consisting of two luminescent tris(2,4,6-trichlorophenyl)methyl (TTM) radicals connected via the -positions of a phenyl linker.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2024
Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China.
Ultrafast spin manipulation for optical spin-logic applications requires material systems with strong spin-selective light-matter interactions. The optical Stark effect can realize spin-selective light-matter interactions by breaking the degeneracy of spin-selective transitions with an external electric field. Halide perovskites have large exciton binding energies, which enable a room-temperature optical Stark effect.
View Article and Find Full Text PDFJ Am Chem Soc
September 2024
Department of Chemistry and INSTM, University of Pavia, Via Taramelli 16, 27100 Pavia, Italy.
Chiral hybrid organic-inorganic metal halides are highly promising chiroptoelectronic materials with potential applications in several fields, such as circularly polarized photodetectors, second-order nonlinear optics, and spin-selective devices. However, the ability of manipulating the chiroptical response and the chirality transfer from the organic ligands require one to shed light on structure-property correlations. Herein, we devised and prepared two novel Ge-based chiral hybrid organic-inorganic metal halides showing a different structural topology, namely, a 1D and a 2D arrangement, but composed of the same chemical building blocks: (/-ClMBA)GeI and (/-ClMBA)GeI.
View Article and Find Full Text PDFPhys Rev Lett
July 2024
State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai 200433, China.
Bound states in the continuum (BICs), which are confined optical modes exhibiting infinite quality factors and carrying topological polarization configurations in momentum space, have recently sparked significant interest across both fundamental and applied physics. Here, we show that breaking time-reversal symmetry by an external magnetic field enables a new form of chiral BICs with spin-orbit locking. Applying a magnetic field to a magneto-optical photonic crystal slab lifts doubly degenerate BICs into a pair of chiral BICs carrying opposite pseudospins and orbital angular momenta.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!