The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4928980 | PMC |
http://dx.doi.org/10.1126/sciadv.1501624 | DOI Listing |
Int J Biol Macromol
January 2025
College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China. Electronic address:
In recent years, conductive gel materials have attracted extensive attention in the field of flexible electronics because of their excellent elasticity. When constructed as gel fibers, they can adapt to greater deformation, be woven, and be assembled with fabrics to make wearable smart devices without compromising comfort. However, gel fibers reported often exhibit insufficient mechanical properties and poor adaptability to different environment.
View Article and Find Full Text PDFScience
January 2025
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
Emerging wearable devices would benefit from integrating ductile photovoltaic light-harvesting power sources. In this work, we report a small-molecule acceptor (SMA), also known as a non-fullerene acceptor (NFA), designed for stretchable organic solar cell (-OSC) blends with large mechanical compliance and performance. Blends of the organosilane-functionalized SMA BTP-Si4 with the polymer donor PNTB6-Cl achieved a power conversion efficiency (PCE) of >16% and ultimate strain (ε) of >95%.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
Soft robotics has undergone considerable progress driven by materials that can effectively transduce external stimuli into mechanical actuation. Here, we report the development of a photothermal-responsive hydrogel actuator with shape memory capabilities inspired by the adaptive locomotion of sea cucumbers. This actuator is based on sea cucumber peptides (SCP) and a liquid metal (LM) hydrogel network that is responsive to near-infrared (NIR) light.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
In this work, we present a facile and straightforward approach for fabricating highly stretchable photodetectors based on AgS and TiCT MXene hybrid materials. These devices exhibit exceptional mechanical resilience, maintaining stable electrical and optical performance even after 10 000 cycles of 30% strain. The incorporation of MXene not only enhances the device's electrical durability but also ensures the retention of conductivity under significant mechanical deformation, positioning MXene as a critical material for the advancement of flexible electronics.
View Article and Find Full Text PDFSmall Methods
January 2025
School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
Flexible tactile sensors have received significant attention for use in wearable applications such as robotics, human-machine interfaces, and health monitoring. However, conventional tactile sensors face challenges in accurately measuring pressure because vertical deformation is induced by Poisson's ratio in situations where lateral strain is applied. This study shows a strain-insensitive flexible tactile sensor array without the crosstalk effect using a highly stretchable mesh.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!