The objective of this study was to evaluate the effect of hydrocolloids and/or emulsifiers on the shelf-life of composite cassava-maize-wheat (ratio 40:10:50) reference bread during storage. Added hydrocolloids were carboxymethylcellulose (CMC) and high methoxyl pectin (HM pectin) at a 3% level (w/w) and/or the emulsifiers diacetyl tartaric acid esters of monoglycerides (DATEM), lecithin (LC), and monoglycerides (MG) at a 0.3% level (w/w). After 4 days of storage, composite breads with MG had comparatively lower crumb moisture while crumb density was similar in all breads. The reference bread crumb firmness was 33.4 N, which was reduced with an addition of DATEM (23.0 N), MG (29.8 N), CMC (24.6 N) or HM pectin (22.4 N). However, the CMC/DATEM, CMC/LC, and HM pectin/DATEM combinations further reduced crumb firmness to <20.0 N. The melting peak temperature was increased from 52 C to between 53.0 C and 57.0 C with added hydrocolloids and/or emulsifiers. The melting enthalpy of the retrograded amylopectin was lower in composite bread with hydrocolloids and emulsifiers, 6.7-11.0 J/g compared to 20.0 J/g for the reference bread. These results show that emulsifiers in combination with hydrocolloids can improve the quality and extend the shelf-life of composite cassava-maize-wheat breads.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4930506PMC
http://dx.doi.org/10.1002/fsn3.326DOI Listing

Publication Analysis

Top Keywords

emulsifiers shelf-life
8
shelf-life composite
8
composite cassava-maize-wheat
8
bread storage
8
and/or emulsifiers
8
reference bread
8
level w/w
8
crumb firmness
8
hydrocolloids emulsifiers
4
cassava-maize-wheat bread
4

Similar Publications

Due to health reasons of polyglycerol polyricinoleate (PGPR), there has been a growing interest in reducing it. To address this, this study developed the PGPR/Protein (whey, pea, and chickpea protein isolates) emulsifier combinations. The effects of these combinations on the preparation, structure, physicochemical and in vitro digestive properties of W/O/W microcapsules were evaluated.

View Article and Find Full Text PDF

Emulsifiers with antioxidant properties, such as protein/polyphenol complexes, adsorb at the oil-water interface and improve the physical and oxidative stability of emulsions. Here, 2% (/) sodium caseinate and varying concentrations of phloretin (0-10 mM) were used to stabilize oil-in-water emulsions. Control emulsions with protein alone showed poor stability with increased droplet sizes from 0.

View Article and Find Full Text PDF

High pressure processing at different hydration levels as a tool to enhance rice bran stability and techno-functionality.

Food Res Int

February 2025

Institute of Agrochemistry and Food Technology (IATA-CSIC), Carrer del Catedràtic Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain; Department of Food and Human Nutritional Sciences, University of Manitoba. Winnipeg, Canada. Electronic address:

High-pressure processing (HPP) enhances food safety and shelf life by inactivating microorganisms and preserving food quality, yet its effectiveness in low-humidity environments has not been evaluated. This study investigated the effects of HPP at 500 MPa for 15 min across varying hydration levels (15, 30, 60, 77 %) on rice bran (RB), aiming to identify microbial effectiveness, besides techno-functional and physicochemical properties. HPP effectively reduced mesophilic bacteria, molds and yeast of RB at > 15 % hydration level, achieving reductions of up to 4 logarithmic cycles in the latter, nearing the detection limit of the method.

View Article and Find Full Text PDF

Rapid detection of hydrogen peroxide and nitrite in adulterated cow milk using enzymatic and nonenzymatic methods on a reusable platform.

RSC Adv

January 2025

Environmental Biotechnology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District Hyderabad 500078 India

Cow milk is readily adulterated due to its complex properties that can emulsify many adulterants. Among the commonly used adulterants in cow milk are hydrogen peroxide (HP) and nitrite. Commercially available HP is added to extend cow milk's shelf life, while nitrite enters through the tap or pond water added to increase cow milk's volume.

View Article and Find Full Text PDF

Recent Advances in the Mechanisms of Quality Degradation and Control Technologies for Peanut Butter: A Literature Review.

Foods

January 2025

Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100080, China.

As the quality of life continues to improve globally, there is an increasing demand for nutritious and high-quality food products. Peanut butter, a widely consumed and nutritionally valuable product, must meet stringent quality standards and exhibit excellent stability to satisfy consumer expectations and maintain its competitive position in the market. However, its high fat content, particularly unsaturated fatty acids, makes it highly susceptible to quality deterioration during storage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!