Penicillium expansum is among the most ubiquitous fungi disseminated worldwide, that could threaten the fruit sector by secreting patulin, a toxic secondary metabolite. Nevertheless, we lack sufficient data regarding the growth and the toxigenesis conditions of this species. This work enables a clear differentiation between the favorable conditions to the P. expansum growth and those promising for patulin production. A mathematical model allowing the estimation of the P. expansum growth rate according to temperature, a W, and pH, was also developed. An optimal growth rate of 0.92 cm/day was predicted at 24°C with pH level of 5.1 and high a W level of 0.99. The model's predictive capability was tested successfully on artificial contaminated apples. This model could be exploited by apple growers and the industrialists of fruit juices in order to predict the development of P. expansum during storage and apple processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4930504PMC
http://dx.doi.org/10.1002/fsn3.324DOI Listing

Publication Analysis

Top Keywords

penicillium expansum
8
expansum growth
8
patulin production
8
growth rate
8
growth
5
study physicochemical
4
physicochemical parameters
4
parameters penicillium
4
growth patulin
4
production temperature
4

Similar Publications

Omics-Based Comparison of Fungal Virulence Genes, Biosynthetic Gene Clusters, and Small Molecules in and .

J Fungi (Basel)

December 2024

Food Quality Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.

is a ubiquitous pathogenic fungus that causes blue mold decay of apple fruit postharvest, and another member of the genus, , is a well-studied saprophyte valued for antibiotic and small molecule production. While these two fungi have been investigated individually, a recent discovery revealed that can block mediated decay of apple fruit. To shed light on this observation, we conducted a comparative genomic, transcriptomic, and metabolomic study of two (404 and 413) and two (Pe21 and R19) isolates.

View Article and Find Full Text PDF

Gene transcription is governed by a complex regulatory system involving changes in chromatin structure, the action of transcription factors, and the activation of -regulatory elements. Postharvest fruits are threatened by , a leading causal agent of blue mold disease and one of the most economically significant postharvest pathogens worldwide. However, information on its transcription regulatory mechanism is lagging.

View Article and Find Full Text PDF

This study investigates the biosynthesis of iron oxide nanoparticles (FeONPs) using the cell-free supernatant of Pseudomonas fluorescens. The synthesized FeONPs were characterized through UV-VIS, XRD, FTIR, FESEM, EDX, TEM, BET, and VSM analyses. The XRD results confirmed that FeONPs were successfully synthesized and EDX analysis indicated that iron accounted for 89.

View Article and Find Full Text PDF

This study explored the synergistic combination of silver nanoparticles (AgNPs), eucalyptus-derived nanofibrillated cellulose (NFC) and cassava starch to develop bionanocomposites with advanced properties suitable for sustainable and antifungal packaging applications. The influence of AgNPs synthesized through a green method using cocoa bean shell combined with varying concentrations of NFC were investigated. Morphological (scanning electron microscopy and atomic force microscopy), optical (L*, C*, °hue, and opacity), chemical (Fourier transform infrared spectroscopy), mechanical (puncture force, tensile strength, and Young's modulus), rheological (flow curve and frequency sweeps, strain, and stress), barrier, and hydrophilicity properties (water vapor permeability, solubility, wettability, and contact angle), as well as the antifungal effect against pathogens (Botrytis cinerea, Penicillium expansum, Colletotrichum musae, and Fusarium semitectum), were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!