The conserved oligomeric Golgi (COG) complex is a peripheral membrane protein complex which orchestrates tethering of intra-Golgi vesicles. We found that COG1-4 (lobe A) and 5-8 (lobe B) protein assemblies are present as independent sub-complexes on cell membranes. Super-resolution microscopy demonstrates that COG sub-complexes are spatially separated on the Golgi with lobe A preferential localization on Golgi stacks and the presence of lobe B on vesicle-like structures, where it physically interacts with v-SNARE GS15. The localization and specific interaction of the COG sub-complexes with the components of vesicle tethering/fusion machinery suggests their different roles in the vesicle tethering cycle. We propose and test a novel model that employs association/disassociation of COG sub-complexes as a mechanism that directs vesicle tethering at Golgi membranes. We demonstrate that defective COG assembly or restriction of tethering complex disassembly by a covalent COG1-COG8 linkage is inhibitory to COG complex activity, supporting the model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935880 | PMC |
http://dx.doi.org/10.1038/srep29139 | DOI Listing |
Front Plant Sci
November 2020
Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States.
The conserved oligomeric Golgi (COG) complex, functioning in retrograde trafficking, is a universal structure present among eukaryotes that maintains the correct Golgi structure and function. The COG complex is composed of eight subunits coalescing into two sub-complexes. COGs1-4 compose Sub-complex A.
View Article and Find Full Text PDFSci Rep
July 2016
Department of Physiology and Biophysics, UAMS, Little Rock, AR, USA.
The conserved oligomeric Golgi (COG) complex is a peripheral membrane protein complex which orchestrates tethering of intra-Golgi vesicles. We found that COG1-4 (lobe A) and 5-8 (lobe B) protein assemblies are present as independent sub-complexes on cell membranes. Super-resolution microscopy demonstrates that COG sub-complexes are spatially separated on the Golgi with lobe A preferential localization on Golgi stacks and the presence of lobe B on vesicle-like structures, where it physically interacts with v-SNARE GS15.
View Article and Find Full Text PDFCell Logist
January 2014
Department of Physiology and Biophysics; UAMS; Little Rock, AR USA.
The conserved oligomeric Golgi complex is a peripheral membrane protein complex that orchestrates the tethering and fusion of intra-Golgi transport carriers with Golgi membranes. In this study we have investigated the membrane attachment of the COG complex and it's on/off dynamic on Golgi membranes. Several complimentary approaches including knock-sideways depletion, FRAP, and FLIP revealed that assembled COG complex is not diffusing from Golgi periphery in live HeLa cells.
View Article and Find Full Text PDFNat Commun
June 2013
Department of Physiology and Biophysics, UAMS, Little Rock, Arkansas 72205, USA.
Vesicular tethers and SNAREs (soluble N-ethylmalemide-sensitive fusion attachment protein receptors) are two key protein components of the intracellular membrane-trafficking machinery. The conserved oligomeric Golgi (COG) complex has been implicated in the tethering of retrograde intra-Golgi vesicles. Here, using yeast two-hybrid and co-immunoprecipitation approaches, we show that three COG subunits, namely COG4, 6 and 8, are capable of interacting with defined Golgi SNAREs, namely STX5, STX6, STX16, GS27 and SNAP29.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!