During interactions with its mammalian host, the pathogenic yeast Candida albicans is exposed to a range of stresses such as superoxide radicals and cationic fluxes. Unexpectedly, a nonbiased screen of transcription factor deletion mutants revealed that the phosphate-responsive transcription factor Pho4 is vital for the resistance of C. albicans to these diverse stresses. RNA-Seq analysis indicated that Pho4 does not induce stress-protective genes directly. Instead, we show that loss of Pho4 affects metal cation toxicity, accumulation, and bioavailability. We demonstrate that pho4Δ cells are sensitive to metal and nonmetal cations and that Pho4-mediated polyphosphate synthesis mediates manganese resistance. Significantly, we show that Pho4 is important for mediating copper bioavailability to support the activity of the copper/zinc superoxide dismutase Sod1 and that loss of Sod1 activity contributes to the superoxide sensitivity of pho4Δ cells. Consistent with the key role of fungal stress responses in countering host phagocytic defenses, we also report that C. albicans pho4Δ cells are acutely sensitive to macrophage-mediated killing and display attenuated virulence in animal infection models. The novel connections between phosphate metabolism, metal homeostasis, and superoxide stress resistance presented in this study highlight the importance of metabolic adaptation in promoting C. albicans survival in the host.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007097PMC
http://dx.doi.org/10.1091/mbc.E16-05-0266DOI Listing

Publication Analysis

Top Keywords

pho4Δ cells
12
candida albicans
8
stress resistance
8
metal homeostasis
8
transcription factor
8
pho4
5
albicans
5
pho4 mediates
4
mediates phosphate
4
phosphate acquisition
4

Similar Publications

Introduction: Chronic alcohol consumption and tobacco usage are major risk factors for esophageal squamous cell carcinoma (ESCC). Excessive tobacco and alcohol consumption lead to oxidative stress and the generation of reactive carbonyl species (RCS) which induce DNA damage and cell apoptosis. This phenomenon contributes to cell damage and carcinogenesis in various organs including ESCC.

View Article and Find Full Text PDF

Background: Chronic tobacco use, in any form, induces significant cellular alterations in the oral mucosa. This study investigates four distinct cytomorphological changes in oral mucosal cells among smokeless tobacco users, examining their association across different genders and age groups.

Materials And Methods: This cross-sectional study involved collecting mucosal samples from smokeless tobacco (naswar/snuff) users through consecutive sampling.

View Article and Find Full Text PDF

Harnessing nuclear receptors to modulate hepatic stellate cell activation for liver fibrosis resolution.

Biochem Pharmacol

December 2024

Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; University of Chinese Academy of Sciences, Beijing, China. Electronic address:

With the recent approval of Resmetirom as the first drug targeting nuclear receptors for metabolic dysfunction-associated steatohepatitis (MASH), there is promising way to treat MASH-associated liver fibrosis. However, liver fibrosis can arise from various pathogenic factors, and effective treatments for fibrosis due to other causes remain elusive. The activation of hepatic stellate cells (HSCs) represents a central link in the pathogenesis of hepatic fibrosis.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease. The present work aimed to explore the function of regulator of Calcineurin 2 (RCAN2) in NAFLD and its related mechanisms. Mice were fed with high-fat diet (HFD) to construct NAFLD model.

View Article and Find Full Text PDF

GABPα targeted by miR-378a-5p inhibits the growth and angiogenesis of colorectal carcinoma.

Int J Biochem Cell Biol

December 2024

Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China; College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China. Electronic address:

Considering the high degree of malignancy, recurrence rate and poor prognosis, exploring promising targets is an imperious strategy for colorectal carcinoma therapy. Recent studies have indicated that GABPα plays a role in cancer aggressiveness, but its exact function and regulatory mechanisms in colorectal cancer progression remain unclear. This study aims to explore the biological role of GABPα and its upstream regulator, miR-378a-5p, in modulating cancer progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!