The formation of the myelin membrane of the oligodendrocyte in the CNS is a fundamental process requiring the coordinated synthesis of many different components. The myelin membrane is particularly rich in lipids, however, the regulation of this lipid synthesis is not understood. In other cell types, including Schwann cells, the myelin-forming cells of the PNS, lipid synthesis is tightly regulated by the sterol regulatory element-binding protein (SREBP) family of transcription factors, but this has not been previously shown in oligodendrocytes. We investigated SREBPs' role during oligodendrocyte differentiation in vitro. Both SREBP-1 and SREBP-2 were expressed in oligodendrocyte precursor cells and differentiating oligodendrocytes. Using the selective site-1 protease (S1P) inhibitor PF-429242, which inhibits the cleavage of SREBP precursor forms into mature forms, we found that preventing SREBP processing inhibited process growth and reduced the expression level of myelin basic protein, a major component of myelin. Further, process extension deficits could be rescued by the addition of exogenous cholesterol. Blocking SREBP processing reduced mRNA transcription and protein levels of SREBP target genes involved in both the fatty acid and the cholesterol synthetic pathways. Furthermore, de novo levels and total levels of cholesterol synthesis were greatly diminished when SREBP processing was inhibited. Together these results indicate that SREBPs are important regulators of oligodendrocyte maturation and that perturbation of their activity may affect myelin formation and integrity. Cover Image for this issue: doi: 10.1111/jnc.13781.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548300PMC
http://dx.doi.org/10.1111/jnc.13721DOI Listing

Publication Analysis

Top Keywords

srebp processing
16
sterol regulatory
8
regulatory element-binding
8
element-binding protein
8
protein srebp
8
site-1 protease
8
protease s1p
8
oligodendrocyte differentiation
8
differentiation in vitro
8
lipid synthesis
8

Similar Publications

Introduction: Brain cholesterol relies on de novo biosynthesis and is crucial for brain development. Cholesterol synthesis is a complex series of reactions that involves more than twenty enzymes to reach the final product and generates a large number of intermediate sterols along two alternate pathways. This is a highly regulated and oxygen-dependent process, and thus sensitive to hypoxia.

View Article and Find Full Text PDF

Negative regulation of SREBP-1/FAS signaling molecules activates the RIG-1/TBK1-mediated IFN-I pathway to inhibit BVDV replication.

Antiviral Res

January 2025

College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing, 163319, China; Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing, 163319, China. Electronic address:

For many viruses, controlling the process of infection is largely dependent on the enzymes of the fatty acid synthesis (FAS) pathway. An appealing therapeutic target in antiviral research is fatty acid synthetase (FASN), a crucial enzyme in the FAS pathway. Bovine viral diarrhea, caused by the Bovine viral diarrhea virus (BVDV), is a significant viral infectious disease posing a substantial threat to global animal husbandry.

View Article and Find Full Text PDF

Theabrownin (TB), the primary pigment in Pu-erh tea, has shown potential in alleviating metabolic syndrome (MS), though its precise mechanisms remain unclear. This study investigated the effects of Pu-erh tea water extract (WE) and TB on high-fat diet (HFD)-induced MS in rats, focusing on miRNA regulation and gut microbiota composition. Both WE and TB significantly improved markers of MS, including dyslipidemia, insulin resistance, and inflammation.

View Article and Find Full Text PDF

The pleomorphic cholesterol sensing motifs of transmembrane proteins.

Chem Phys Lipids

November 2024

Laboratory of Molecular Neurobiology, Biomedical Research Institute, UCA-CONICET, Buenos Aires C1107AAF, Argentina. Electronic address:

Millions of years of phylogenetic evolution have shaped the crosstalk between sterols and membrane-embedded proteins. This lengthy process, which began before the appearance of eukaryotic cells, has sculpted the two types of molecules to cover a wide spectrum of structural interconnectedness, ranging from rapid touch-and-go hits of low-affinity between surfaces to stronger lock-and-key type structural contacts. The former usually involve relatively loose contacts between linear amino acid sequences on the membrane-exposed transmembrane domains of the protein, readily accessible to the sterols as they briefly visit clefts between adjacent transmembrane segments while in rapid exchange with the bulk lipid bilayer.

View Article and Find Full Text PDF

This study aimed to explore the effects of sodium butyrate on liver metabolism in goats subjected to a high-concentrate diet. We randomly assigned twelve Saanen-lactating goats into two groups, one of which received a high-concentrate diet (concentrate: forage = 60:40, control group), while the other received the same basal diet supplemented with sodium butyrate (SB) (10 g/kg basal diet, SB group). Compared with the control diet, the SB diet considerably increased the milk fat percentage and content ( < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!