DNA methylation, once considered to rule the sex determination in Mary Lyon's hypothesis, has now reached the epicenter of human diseases, from monogenic (e.g. Prader Willi syndrome, Angelman syndromes and Beckwith-Wiedemann syndrome) to polygenic diseases, like cancer. Technological developments from gold standard to high throughput technologies have made tremendous advancement to define the epigenetic mechanism of cancer. Gallbladder cancer (GBC) is a fatal health issue affecting mostly the middle-aged women, whose survival rate is very low due to late symptomatic diagnosis. DNA methylation has become one of the key molecular mechanisms in the tumorigenesis of gallbladder. Various molecules have been reported to be epigenetically altered in GBC. In this review, we have discussed the classes of epigenetics, an overview of DNA methylation, technological approaches for its study, profile of methylated genes, their likely roles in GBC, future prospects of biomarker development and other discovery approaches, including therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ajco.12507 | DOI Listing |
Eur J Epidemiol
January 2025
Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, 800 E. Leigh St., Suite 100, Richmond, VA, 23298, USA.
Cigarette smoking is associated with numerous differentially-methylated genomic loci in multiple human tissues. These associations are often assumed to reflect the causal effects of smoking on DNA methylation (DNAm), which may underpin some of the adverse health sequelae of smoking. However, prior causal analyses with Mendelian Randomisation (MR) have found limited support for such effects.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel.
Background: Type 2 diabetes (T2D) is a recognized risk factor for dementia. This study aimed to pinpoint blood DNA methylation biomarkers for cognitive decline in older adults with T2D by comparing those who developed dementia with those who remained cognitively normal during follow-up METHOD: Illumina Infinium MethylationEPIC microarray was used for the initial 24 couples and Infinium HumanMethylationEPIC microarray version 2.0 for the subsequent 8 couples.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
Background: Whole genome methylation sequencing (WGMS) in blood identifies extensive differential DNA methylation between persons who are cognitively unimpaired (CU) and those with late-onset dementia due to Alzheimer's disease (AD). Here we investigate differentially methylated positions (DMPs) in persons with mild cognitive impairment (MCI) compared to persons with and without AD.
Method: WGMS data quantified DNA methylation levels at 25,406,945 CpG loci in 382 blood samples from 99 persons with MCI, 109 persons with AD and 174 cognitively unimpaired persons in the Wisconsin Alzheimer's Disease Research Center (WADRC) and the Wisconsin Registry for Alzheimer's Prevention (WRAP).
Alzheimers Dement
December 2024
Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX, USA.
Background: Epigenetic clocks are biomarkers of biological age based on DNA methylation (DNAm) patterns and are widely used as predictors of health and aging outcomes. Multiple epigenetic clocks have been developed and reflect different aspects of the multidimensional aging process, above and beyond chronological age. To date, no study has examined the relationship of epigenetic aging with circulating biomarkers of Alzheimer's Disease (AD).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
Background: Sex is an important factor that contributes to both clinical and biological heterogeneity in Alzheimer's disease (AD), but the regulatory mechanisms underlying sex differences in AD are still not well understood. DNA methylation (DNAm) is an epigenetic modification that regulates gene transcription and is known to be involved in AD. However, due to analytical and biological complexity, few previous DNAm studies analyzed the X chromosome, where many genes influencing cognitive abilities and immune functions are located.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!