Exploiting carbonic anhydrase (CA), an enzyme that rapidly catalyzes carbon dioxide hydration, is an attractive biomimetic route for carbon sequestration due to its environmental compatibility and potential economic viability. However, the industrial applications of CA are strongly hampered by the unstable nature of enzymes. In this work, we introduced in silico designed, de novo disulfide bond in a bacterial α-type CA to enhance thermostability. Three variants were selected and expressed in Escherichia coli with an additional disulfide bridge. One of the variants showed great enhancement in terms of both kinetic and thermodynamic stabilities. This improvement could be attributed to the loss of conformational entropy of the unfolded state, showing increased rigidity. The variant showed an upward-shifted optimal temperature and appeared to be thermoactivated, which compensated for the lowered activity at 25 °C. Collectively, the variant constructed by the rapid and effective de novo disulfide engineering can be used as an efficient biocatalyst for carbon sequestration under high temperature conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935852 | PMC |
http://dx.doi.org/10.1038/srep29322 | DOI Listing |
Biochem Biophys Res Commun
January 2025
Department of Internal Medicine 1, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan; The Center for Integrated Kidney Research and Advance, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, 693-8501, Japan. Electronic address:
Inhibition of xanthine oxidoreductase (XOR) was shown to ameliorate the stroke susceptibility in the stroke-prone spontaneously hypertensive rat (SHRSP), suggesting hyperuricemia had a pathological role in this rat model. In this study, we thus aimed to explore mechanisms inducing hyperuricemia in SHRSP. XOR is known to have two forms, xanthine dehydrogenase (XDH) as the prototype and xanthine oxidase (XO) as the converted form through cleavage of a peptide bond or through formation of disulfide bonds in the enzyme.
View Article and Find Full Text PDFBioorg Med Chem Lett
March 2025
Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan. Electronic address:
At present, mid-sized binding peptides have emerged as a new class of drug modalities. We have de novo designed a helix-loop-helix (HLH) peptide (MW: ∼4,500), constructed phage-displayed libraries, and screened the libraries against a variety of disease-related proteins to successfully obtain molecular-targeting HLH peptides. The next essential step in developing HLH peptides into therapeutics involves affinity engineering to optimize binding affinity and specificity.
View Article and Find Full Text PDFFree Radic Biol Med
February 2025
Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Inorg Chem
December 2024
School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
Identification of disulfide-peptide-bond-containing glutathione (GSSG) over the monosulfide form (GSH) remains a very challenging task because of their identical chemical properties. Although GSH detection has been well documented, selective detection of GSSG has rarely been reported. Here, four cationic Ag-based coordination polymers (Ag CPs) were synthesized using newly synthesized monotriazole linker 3-amino-5-(4-1,2,4-triazol-4-yl)pyridine to selectively screen GSSG over GSH.
View Article and Find Full Text PDFFront Pharmacol
November 2024
Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!