Although a few well-characterized polyketide synthases (PKSs) have been functionally reconstituted in vitro from purified protein components, the use of this strategy to decode "orphan" assembly line PKSs has not been described. To begin investigating a PKS found only in Nocardia strains associated with clinical cases of nocardiosis, we reconstituted in vitro its five terminal catalytic modules. In the presence of octanoyl-CoA, malonyl-CoA, NADPH, and S-adenosyl methionine, this pentamodular PKS system yielded unprecedented octaketide and heptaketide products whose structures were partially elucidated using mass spectrometry and NMR spectroscopy. The PKS has several notable features, including a "split, stuttering" module and a terminal reductive release mechanism. Our findings pave the way for further analysis of this unusual biosynthetic gene cluster whose natural product may enhance the infectivity of its producer strains in human hosts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055052 | PMC |
http://dx.doi.org/10.1021/acschembio.6b00489 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!